基于局部特征增强的图像检索

Long Zhao, Yu Wang, Jien Kato
{"title":"基于局部特征增强的图像检索","authors":"Long Zhao, Yu Wang, Jien Kato","doi":"10.1109/DICTA.2017.8227461","DOIUrl":null,"url":null,"abstract":"Recently, a lot of works have shown the advantages of utilizing the deep descriptors, obtained from the features of the last convolution layer in CNNs, on image retrieval. In this paper, we focus on augmenting and fusing CNN features for the image retrieval task. We first investigate the effects of network rotation, and then propose two models for deep feature augmenting: single model augmenting and multiple model augmenting. For the single model augmenting, we expand the model by rotating and flipping the single network. While for the multiple model, we expand filters by connecting the different networks together. As to the fusion methods, we evaluate concatenation, average and max pooling. We conduct a thorough evaluation of the above models and fusion approaches, and show the state of the art performance of our proposed approach.","PeriodicalId":194175,"journal":{"name":"2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Features Augmenting for Better Image Retrieval\",\"authors\":\"Long Zhao, Yu Wang, Jien Kato\",\"doi\":\"10.1109/DICTA.2017.8227461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a lot of works have shown the advantages of utilizing the deep descriptors, obtained from the features of the last convolution layer in CNNs, on image retrieval. In this paper, we focus on augmenting and fusing CNN features for the image retrieval task. We first investigate the effects of network rotation, and then propose two models for deep feature augmenting: single model augmenting and multiple model augmenting. For the single model augmenting, we expand the model by rotating and flipping the single network. While for the multiple model, we expand filters by connecting the different networks together. As to the fusion methods, we evaluate concatenation, average and max pooling. We conduct a thorough evaluation of the above models and fusion approaches, and show the state of the art performance of our proposed approach.\",\"PeriodicalId\":194175,\"journal\":{\"name\":\"2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2017.8227461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2017.8227461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,很多研究都表明了利用cnn最后一层卷积特征得到的深度描述符在图像检索上的优势。在本文中,我们专注于增强和融合CNN特征来完成图像检索任务。我们首先研究了网络旋转的影响,然后提出了两种深度特征增强模型:单模型增强和多模型增强。对于单模型扩充,我们通过旋转和翻转单个网络来扩展模型。而对于多模型,我们通过将不同的网络连接在一起来扩展过滤器。对于融合方法,我们分别对拼接、平均和最大池化进行了评价。我们对上述模型和融合方法进行了全面的评估,并展示了我们提出的方法的最先进性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Features Augmenting for Better Image Retrieval
Recently, a lot of works have shown the advantages of utilizing the deep descriptors, obtained from the features of the last convolution layer in CNNs, on image retrieval. In this paper, we focus on augmenting and fusing CNN features for the image retrieval task. We first investigate the effects of network rotation, and then propose two models for deep feature augmenting: single model augmenting and multiple model augmenting. For the single model augmenting, we expand the model by rotating and flipping the single network. While for the multiple model, we expand filters by connecting the different networks together. As to the fusion methods, we evaluate concatenation, average and max pooling. We conduct a thorough evaluation of the above models and fusion approaches, and show the state of the art performance of our proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信