K. Katsarou, Sukanya Sunder, Vinicius Woloszyn, Konstantinos Semertzidis
{"title":"在线社交网络中的情感两极分化:仇恨言论的流动","authors":"K. Katsarou, Sukanya Sunder, Vinicius Woloszyn, Konstantinos Semertzidis","doi":"10.1109/SNAMS53716.2021.9732077","DOIUrl":null,"url":null,"abstract":"The influence of sentiment polarization and ex-change in online social networks has been growing and studied by many researchers and organizations worldwide. For example, the sentiments expressed in a text concerning a topic in the discussion tend to influence a community when a Twitter user retweets the original text, causing a chain of reactions within a network. This paper investigates sentiment polarization in Twitter, focusing on tweets with the hashtags #Coronavirus, #ClimateChange #Immigrants, and #MeToo. Specifically, we collect the tweets mentioned above and classify them into five categories: hate speech, offensive, sexism, positive, and neutral. In this context, we address the problem as a multiclass classification problem by using the pre-trained language models ULMFiT and AWD-LSTM, which achieved a Fmicro of 0.85. Finally, we use the classified dataset to conduct a case study in which we capture the sentiment orientation during the network evolution.","PeriodicalId":387260,"journal":{"name":"2021 Eighth International Conference on Social Network Analysis, Management and Security (SNAMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sentiment Polarization in Online Social Networks: The Flow of Hate Speech\",\"authors\":\"K. Katsarou, Sukanya Sunder, Vinicius Woloszyn, Konstantinos Semertzidis\",\"doi\":\"10.1109/SNAMS53716.2021.9732077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of sentiment polarization and ex-change in online social networks has been growing and studied by many researchers and organizations worldwide. For example, the sentiments expressed in a text concerning a topic in the discussion tend to influence a community when a Twitter user retweets the original text, causing a chain of reactions within a network. This paper investigates sentiment polarization in Twitter, focusing on tweets with the hashtags #Coronavirus, #ClimateChange #Immigrants, and #MeToo. Specifically, we collect the tweets mentioned above and classify them into five categories: hate speech, offensive, sexism, positive, and neutral. In this context, we address the problem as a multiclass classification problem by using the pre-trained language models ULMFiT and AWD-LSTM, which achieved a Fmicro of 0.85. Finally, we use the classified dataset to conduct a case study in which we capture the sentiment orientation during the network evolution.\",\"PeriodicalId\":387260,\"journal\":{\"name\":\"2021 Eighth International Conference on Social Network Analysis, Management and Security (SNAMS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Eighth International Conference on Social Network Analysis, Management and Security (SNAMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNAMS53716.2021.9732077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Eighth International Conference on Social Network Analysis, Management and Security (SNAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNAMS53716.2021.9732077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sentiment Polarization in Online Social Networks: The Flow of Hate Speech
The influence of sentiment polarization and ex-change in online social networks has been growing and studied by many researchers and organizations worldwide. For example, the sentiments expressed in a text concerning a topic in the discussion tend to influence a community when a Twitter user retweets the original text, causing a chain of reactions within a network. This paper investigates sentiment polarization in Twitter, focusing on tweets with the hashtags #Coronavirus, #ClimateChange #Immigrants, and #MeToo. Specifically, we collect the tweets mentioned above and classify them into five categories: hate speech, offensive, sexism, positive, and neutral. In this context, we address the problem as a multiclass classification problem by using the pre-trained language models ULMFiT and AWD-LSTM, which achieved a Fmicro of 0.85. Finally, we use the classified dataset to conduct a case study in which we capture the sentiment orientation during the network evolution.