{"title":"使用维基百科资源聚类网络搜索结果","authors":"Chung-Nguyen Tran, A. Ameljanczyk","doi":"10.5604/01.3001.0014.4437","DOIUrl":null,"url":null,"abstract":"The paper presents a proposal of a new method for clustering search results. The method uses an external knowledge resource, which can be, for example, Wikipedia. Wikipedia – the largest encyclopedia, is a free and popular knowledge resource which is used to extract topics from short texts. Similarities between documents are calculated based on the similarities between these topics. After that, affinity propagation clustering algorithm is employed to cluster web search results. Proposed method is tested by AMBIENT dataset and evaluated within the experimental framework provided by a SemEval-2013 task. The paper also suggests new method to compare global performance of algorithms using multi – criteria analysis.\n\n","PeriodicalId":240434,"journal":{"name":"Computer Science and Mathematical Modelling","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Clustering web search results using Wikipedia resource\",\"authors\":\"Chung-Nguyen Tran, A. Ameljanczyk\",\"doi\":\"10.5604/01.3001.0014.4437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a proposal of a new method for clustering search results. The method uses an external knowledge resource, which can be, for example, Wikipedia. Wikipedia – the largest encyclopedia, is a free and popular knowledge resource which is used to extract topics from short texts. Similarities between documents are calculated based on the similarities between these topics. After that, affinity propagation clustering algorithm is employed to cluster web search results. Proposed method is tested by AMBIENT dataset and evaluated within the experimental framework provided by a SemEval-2013 task. The paper also suggests new method to compare global performance of algorithms using multi – criteria analysis.\\n\\n\",\"PeriodicalId\":240434,\"journal\":{\"name\":\"Computer Science and Mathematical Modelling\",\"volume\":\"191 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science and Mathematical Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0014.4437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science and Mathematical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0014.4437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Clustering web search results using Wikipedia resource
The paper presents a proposal of a new method for clustering search results. The method uses an external knowledge resource, which can be, for example, Wikipedia. Wikipedia – the largest encyclopedia, is a free and popular knowledge resource which is used to extract topics from short texts. Similarities between documents are calculated based on the similarities between these topics. After that, affinity propagation clustering algorithm is employed to cluster web search results. Proposed method is tested by AMBIENT dataset and evaluated within the experimental framework provided by a SemEval-2013 task. The paper also suggests new method to compare global performance of algorithms using multi – criteria analysis.