{"title":"注意循环词中因子的出现","authors":"P. Arnoux","doi":"10.1051/ita/2016019","DOIUrl":null,"url":null,"abstract":"We give an elementary proof of a property discovered by Xavier Grandsart: let W be a circular binary word; then the differences in the number of occurrences |W |0011 − |W |1100 , |W |1101 − |W |1011 , |W |1010 − |W |0101 and |W |0100 − |W |0010 are equal; this property is easily generalized using the De Bruijn graph.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"337 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Note on occurrences of factors in circular words\",\"authors\":\"P. Arnoux\",\"doi\":\"10.1051/ita/2016019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an elementary proof of a property discovered by Xavier Grandsart: let W be a circular binary word; then the differences in the number of occurrences |W |0011 − |W |1100 , |W |1101 − |W |1011 , |W |1010 − |W |0101 and |W |0100 − |W |0010 are equal; this property is easily generalized using the De Bruijn graph.\",\"PeriodicalId\":438841,\"journal\":{\"name\":\"RAIRO Theor. Informatics Appl.\",\"volume\":\"337 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Theor. Informatics Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ita/2016019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2016019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We give an elementary proof of a property discovered by Xavier Grandsart: let W be a circular binary word; then the differences in the number of occurrences |W |0011 − |W |1100 , |W |1101 − |W |1011 , |W |1010 − |W |0101 and |W |0100 − |W |0010 are equal; this property is easily generalized using the De Bruijn graph.