混合层次极限学习机

Meiyi Li, Changfei Wang, Qingshuai Sun
{"title":"混合层次极限学习机","authors":"Meiyi Li, Changfei Wang, Qingshuai Sun","doi":"10.1145/3208788.3208793","DOIUrl":null,"url":null,"abstract":"Restricted by the shallow structure of Extreme Learning Machine(ELM), the ideal fitting effect can not be achieved even if large hidden nodes are set. In order to obtain better feature representation and classification performance, this paper proposes a Hybrid Hierarchical Extreme Learning Machine (HH-ELM) on the hierarchical thought of Hierarchical Extreme Learning Machine(H-ELM). The feature extraction part uses ELM-Based Auto-Encoder(ELM-AE) based on L1-norm regularization to optimize the hidden layer weights, and the classification part adopts Improved Tow-hidden-layer Extreme Learning Machine(ITELM). Experimental results on UCI datasets and Mnist images datasets show that HH-ELM has better classification results and robustness.","PeriodicalId":211585,"journal":{"name":"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence","volume":"35 35","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid hierarchical extreme learning machine\",\"authors\":\"Meiyi Li, Changfei Wang, Qingshuai Sun\",\"doi\":\"10.1145/3208788.3208793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Restricted by the shallow structure of Extreme Learning Machine(ELM), the ideal fitting effect can not be achieved even if large hidden nodes are set. In order to obtain better feature representation and classification performance, this paper proposes a Hybrid Hierarchical Extreme Learning Machine (HH-ELM) on the hierarchical thought of Hierarchical Extreme Learning Machine(H-ELM). The feature extraction part uses ELM-Based Auto-Encoder(ELM-AE) based on L1-norm regularization to optimize the hidden layer weights, and the classification part adopts Improved Tow-hidden-layer Extreme Learning Machine(ITELM). Experimental results on UCI datasets and Mnist images datasets show that HH-ELM has better classification results and robustness.\",\"PeriodicalId\":211585,\"journal\":{\"name\":\"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence\",\"volume\":\"35 35\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3208788.3208793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208788.3208793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

极限学习机(Extreme Learning Machine, ELM)受浅结构的限制,即使设置较大的隐藏节点,也无法达到理想的拟合效果。为了获得更好的特征表示和分类性能,本文在层次极限学习机(H-ELM)的层次思想基础上提出了一种混合层次极限学习机(HH-ELM)。特征提取部分采用基于l2范数正则化的ELM-Based Auto-Encoder(ELM-AE)优化隐层权值,分类部分采用改进的双隐层极限学习机(ITELM)。在UCI数据集和Mnist图像数据集上的实验结果表明,HH-ELM具有较好的分类效果和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid hierarchical extreme learning machine
Restricted by the shallow structure of Extreme Learning Machine(ELM), the ideal fitting effect can not be achieved even if large hidden nodes are set. In order to obtain better feature representation and classification performance, this paper proposes a Hybrid Hierarchical Extreme Learning Machine (HH-ELM) on the hierarchical thought of Hierarchical Extreme Learning Machine(H-ELM). The feature extraction part uses ELM-Based Auto-Encoder(ELM-AE) based on L1-norm regularization to optimize the hidden layer weights, and the classification part adopts Improved Tow-hidden-layer Extreme Learning Machine(ITELM). Experimental results on UCI datasets and Mnist images datasets show that HH-ELM has better classification results and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信