Vasilis Ethan Sarris, Panos K. Chrysanthis, Constantinos Costa
{"title":"在不忽略时间的前提下,推荐最不拥挤的室内外路径","authors":"Vasilis Ethan Sarris, Panos K. Chrysanthis, Constantinos Costa","doi":"10.1145/3609956.3609969","DOIUrl":null,"url":null,"abstract":"The exposure to viral airborne diseases is higher in crowded and congested spaces, the COVID-19 pandemic has revealed the need of pedestrian recommendation systems that can recommend less congested paths which minimize exposure to infectious crowd diseases in general. In this paper, we introduce ASTRO-C, an extension of previous work ASTRO, which optimizes for minimum congestion. To our knowledge, ASTRO-C is the only solution to this problem of constraint-satisfying, indoor-outdoor, congestion-based path finding. Our experimental evaluation using randomly generated Indoor-Outdoor graphs with varying constraints matching various real-world scenarios, show that ASTRO-C is able to recommend paths with, on average a 0.62X reduction in average congestion, while on average, total travel time increases by 1.06X and never exceeds 1.10X compared to ASTRO.","PeriodicalId":274777,"journal":{"name":"Proceedings of the 18th International Symposium on Spatial and Temporal Data","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recommending the Least Congested Indoor-Outdoor Paths without Ignoring Time\",\"authors\":\"Vasilis Ethan Sarris, Panos K. Chrysanthis, Constantinos Costa\",\"doi\":\"10.1145/3609956.3609969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exposure to viral airborne diseases is higher in crowded and congested spaces, the COVID-19 pandemic has revealed the need of pedestrian recommendation systems that can recommend less congested paths which minimize exposure to infectious crowd diseases in general. In this paper, we introduce ASTRO-C, an extension of previous work ASTRO, which optimizes for minimum congestion. To our knowledge, ASTRO-C is the only solution to this problem of constraint-satisfying, indoor-outdoor, congestion-based path finding. Our experimental evaluation using randomly generated Indoor-Outdoor graphs with varying constraints matching various real-world scenarios, show that ASTRO-C is able to recommend paths with, on average a 0.62X reduction in average congestion, while on average, total travel time increases by 1.06X and never exceeds 1.10X compared to ASTRO.\",\"PeriodicalId\":274777,\"journal\":{\"name\":\"Proceedings of the 18th International Symposium on Spatial and Temporal Data\",\"volume\":\"222 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th International Symposium on Spatial and Temporal Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3609956.3609969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Symposium on Spatial and Temporal Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3609956.3609969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recommending the Least Congested Indoor-Outdoor Paths without Ignoring Time
The exposure to viral airborne diseases is higher in crowded and congested spaces, the COVID-19 pandemic has revealed the need of pedestrian recommendation systems that can recommend less congested paths which minimize exposure to infectious crowd diseases in general. In this paper, we introduce ASTRO-C, an extension of previous work ASTRO, which optimizes for minimum congestion. To our knowledge, ASTRO-C is the only solution to this problem of constraint-satisfying, indoor-outdoor, congestion-based path finding. Our experimental evaluation using randomly generated Indoor-Outdoor graphs with varying constraints matching various real-world scenarios, show that ASTRO-C is able to recommend paths with, on average a 0.62X reduction in average congestion, while on average, total travel time increases by 1.06X and never exceeds 1.10X compared to ASTRO.