顶点覆盖的偏长码与硬度

{"title":"顶点覆盖的偏长码与硬度","authors":"","doi":"10.1145/3568031.3568037","DOIUrl":null,"url":null,"abstract":"5.1 Biased Long Code While the biased long code can be viewed as an encoding scheme, it is more con­ venient to take a combinatorial view and treat it as a weighted Kneser graph. Valid codewords correspond to certain large (in fact the largest) independent sets in this graph. Definition 5.1 For a bias parameter p ∈ (0, 1) and alphabet Σ, the vertex set of weighted Kneser graph Gp[Σ] is P(Σ), the family of all subsets of Σ. The weight of a vertex A ⊆ Σ is μp(A) = p|A|(1 − p)|Σ|−|A|. The edge set is { (A, B) | A, B ⊆ Σ, A ∩ B = φ}. For a family F ⊆ P(Σ), let μp(F ) denote its weight under μp.","PeriodicalId":377190,"journal":{"name":"Circuits, Packets, and Protocols","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Biased Long Code and Hardness of Vertex Cover\",\"authors\":\"\",\"doi\":\"10.1145/3568031.3568037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"5.1 Biased Long Code While the biased long code can be viewed as an encoding scheme, it is more con­ venient to take a combinatorial view and treat it as a weighted Kneser graph. Valid codewords correspond to certain large (in fact the largest) independent sets in this graph. Definition 5.1 For a bias parameter p ∈ (0, 1) and alphabet Σ, the vertex set of weighted Kneser graph Gp[Σ] is P(Σ), the family of all subsets of Σ. The weight of a vertex A ⊆ Σ is μp(A) = p|A|(1 − p)|Σ|−|A|. The edge set is { (A, B) | A, B ⊆ Σ, A ∩ B = φ}. For a family F ⊆ P(Σ), let μp(F ) denote its weight under μp.\",\"PeriodicalId\":377190,\"journal\":{\"name\":\"Circuits, Packets, and Protocols\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circuits, Packets, and Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3568031.3568037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuits, Packets, and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3568031.3568037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然偏长码可以看作是一种编码方案,但从组合的角度来看,将其视为加权的Kneser图更为方便。有效码字对应于此图中某些较大的(实际上是最大的)独立集。定义5.1对于偏差参数p∈(0,1),字母Σ,加权Kneser图Gp[Σ]的顶点集为p (Σ),即Σ的所有子集的族。一个顶点的重量⊆Σμp (a) = p | |(1−p) |Σ|−| |。边集为{(A, B) | A, B≤Σ, A∩B = φ}。对于一个族F (Σ),设μp(F)为其在μp下的权值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Biased Long Code and Hardness of Vertex Cover
5.1 Biased Long Code While the biased long code can be viewed as an encoding scheme, it is more con­ venient to take a combinatorial view and treat it as a weighted Kneser graph. Valid codewords correspond to certain large (in fact the largest) independent sets in this graph. Definition 5.1 For a bias parameter p ∈ (0, 1) and alphabet Σ, the vertex set of weighted Kneser graph Gp[Σ] is P(Σ), the family of all subsets of Σ. The weight of a vertex A ⊆ Σ is μp(A) = p|A|(1 − p)|Σ|−|A|. The edge set is { (A, B) | A, B ⊆ Σ, A ∩ B = φ}. For a family F ⊆ P(Σ), let μp(F ) denote its weight under μp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信