彩色图像的自然统计

Zeina Sinno, A. Bovik
{"title":"彩色图像的自然统计","authors":"Zeina Sinno, A. Bovik","doi":"10.1109/SSIAI.2018.8470308","DOIUrl":null,"url":null,"abstract":"The visual brain is optimally designed to process images from the natural environment that we perceive. Describing the natural environment statistically helps in understanding how the brain encodes those images efficiently. The Natural Scene Statistics (NSS) of the luminance component of images is the basis of several univariate and bivariate statistical models. The NSS of other colors or chromatic components have been less well-analyzed. In this paper, we study the univariate and bivariate NSS of luminance and other chromatic components and how they relate.","PeriodicalId":422209,"journal":{"name":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","volume":"246 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the Natural Statistics of Chromatic Images\",\"authors\":\"Zeina Sinno, A. Bovik\",\"doi\":\"10.1109/SSIAI.2018.8470308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The visual brain is optimally designed to process images from the natural environment that we perceive. Describing the natural environment statistically helps in understanding how the brain encodes those images efficiently. The Natural Scene Statistics (NSS) of the luminance component of images is the basis of several univariate and bivariate statistical models. The NSS of other colors or chromatic components have been less well-analyzed. In this paper, we study the univariate and bivariate NSS of luminance and other chromatic components and how they relate.\",\"PeriodicalId\":422209,\"journal\":{\"name\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"volume\":\"246 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSIAI.2018.8470308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSIAI.2018.8470308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

视觉大脑的最佳设计是处理我们所感知的自然环境中的图像。从统计学上描述自然环境有助于理解大脑如何有效地对这些图像进行编码。图像亮度分量的自然场景统计(NSS)是几种单变量和双变量统计模型的基础。其他颜色或色彩成分的NSS分析得较少。本文研究了亮度和其他色度分量的单变量和双变量NSS,以及它们之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Natural Statistics of Chromatic Images
The visual brain is optimally designed to process images from the natural environment that we perceive. Describing the natural environment statistically helps in understanding how the brain encodes those images efficiently. The Natural Scene Statistics (NSS) of the luminance component of images is the basis of several univariate and bivariate statistical models. The NSS of other colors or chromatic components have been less well-analyzed. In this paper, we study the univariate and bivariate NSS of luminance and other chromatic components and how they relate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信