{"title":"训练一类具有分类问题的混合通用学习网络","authors":"D. Li, K. Hirasawa, J. Hu, J. Murata","doi":"10.1109/IJCNN.2002.1005559","DOIUrl":null,"url":null,"abstract":"In the search for even better parsimonious neural network modeling, this paper describes a novel approach which attempts to exploit redundancy found in the conventional sigmoidal networks. A hybrid universal learning network constructed by the combination of proposed multiplication units with summation units is trained for several classification problems. It is clarified that the multiplication units in different layers in the network improve the performance of the network.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Training a kind of hybrid universal learning networks with classification problems\",\"authors\":\"D. Li, K. Hirasawa, J. Hu, J. Murata\",\"doi\":\"10.1109/IJCNN.2002.1005559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the search for even better parsimonious neural network modeling, this paper describes a novel approach which attempts to exploit redundancy found in the conventional sigmoidal networks. A hybrid universal learning network constructed by the combination of proposed multiplication units with summation units is trained for several classification problems. It is clarified that the multiplication units in different layers in the network improve the performance of the network.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1005559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1005559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Training a kind of hybrid universal learning networks with classification problems
In the search for even better parsimonious neural network modeling, this paper describes a novel approach which attempts to exploit redundancy found in the conventional sigmoidal networks. A hybrid universal learning network constructed by the combination of proposed multiplication units with summation units is trained for several classification problems. It is clarified that the multiplication units in different layers in the network improve the performance of the network.