使用非参数模式识别方法的实时异常检测

Linda B. Lankewicz, M. Benard
{"title":"使用非参数模式识别方法的实时异常检测","authors":"Linda B. Lankewicz, M. Benard","doi":"10.1109/CSAC.1991.213016","DOIUrl":null,"url":null,"abstract":"Obstacles to achieving anomaly detection in real time include the large volume of data associated with user behavior and the nature of that data. The paper describes preliminary results from a research project which is developing a new approach to handling such data. The approach involves nonparametric statistical methods which permits considerable data compression and which supports pattern recognition techniques for identifying user behavior. This approach applies these methods to a combination of measurements of resource usage and structural information about the behavior of processes. Preliminary results indicate that both accuracy and real time response can be achieved using these methods.<<ETX>>","PeriodicalId":108621,"journal":{"name":"Proceedings Seventh Annual Computer Security Applications Conference","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Real-time anomaly detection using a nonparametric pattern recognition approach\",\"authors\":\"Linda B. Lankewicz, M. Benard\",\"doi\":\"10.1109/CSAC.1991.213016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Obstacles to achieving anomaly detection in real time include the large volume of data associated with user behavior and the nature of that data. The paper describes preliminary results from a research project which is developing a new approach to handling such data. The approach involves nonparametric statistical methods which permits considerable data compression and which supports pattern recognition techniques for identifying user behavior. This approach applies these methods to a combination of measurements of resource usage and structural information about the behavior of processes. Preliminary results indicate that both accuracy and real time response can be achieved using these methods.<<ETX>>\",\"PeriodicalId\":108621,\"journal\":{\"name\":\"Proceedings Seventh Annual Computer Security Applications Conference\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Seventh Annual Computer Security Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSAC.1991.213016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Seventh Annual Computer Security Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAC.1991.213016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

实现实时异常检测的障碍包括与用户行为相关的大量数据以及这些数据的性质。本文描述了一个研究项目的初步结果,该项目正在开发一种处理此类数据的新方法。该方法涉及非参数统计方法,允许大量数据压缩,并支持用于识别用户行为的模式识别技术。这种方法将这些方法应用于资源使用度量和关于过程行为的结构信息的组合。初步结果表明,这些方法既能达到精度,又能达到实时响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time anomaly detection using a nonparametric pattern recognition approach
Obstacles to achieving anomaly detection in real time include the large volume of data associated with user behavior and the nature of that data. The paper describes preliminary results from a research project which is developing a new approach to handling such data. The approach involves nonparametric statistical methods which permits considerable data compression and which supports pattern recognition techniques for identifying user behavior. This approach applies these methods to a combination of measurements of resource usage and structural information about the behavior of processes. Preliminary results indicate that both accuracy and real time response can be achieved using these methods.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信