函数逼近的神经网络

H. Mhaskar, L. Khachikyan
{"title":"函数逼近的神经网络","authors":"H. Mhaskar, L. Khachikyan","doi":"10.1109/NNSP.1995.514875","DOIUrl":null,"url":null,"abstract":"We describe certain results of Mhaskar concerning the approximation capabilities of neural networks with one hidden layer. In particular, these results demonstrate the construction of neural networks evaluating a squashing function or a radial basis function for optimal approximation of the Sobolev spaces. We also report on the application of some of these ideas in the construction of general-purpose networks for the prediction of time series, when the number of independent variables is known in advance, such as the Mackey-Glass series or the flour data.","PeriodicalId":403144,"journal":{"name":"Proceedings of 1995 IEEE Workshop on Neural Networks for Signal Processing","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Neural networks for function approximation\",\"authors\":\"H. Mhaskar, L. Khachikyan\",\"doi\":\"10.1109/NNSP.1995.514875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe certain results of Mhaskar concerning the approximation capabilities of neural networks with one hidden layer. In particular, these results demonstrate the construction of neural networks evaluating a squashing function or a radial basis function for optimal approximation of the Sobolev spaces. We also report on the application of some of these ideas in the construction of general-purpose networks for the prediction of time series, when the number of independent variables is known in advance, such as the Mackey-Glass series or the flour data.\",\"PeriodicalId\":403144,\"journal\":{\"name\":\"Proceedings of 1995 IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1995 IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.1995.514875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1995.514875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

描述了Mhaskar关于单隐层神经网络逼近能力的若干结果。特别地,这些结果证明了神经网络的构造评估一个压缩函数或径向基函数的最优逼近Sobolev空间。我们还报告了其中一些思想在构建用于预测时间序列的通用网络中的应用,当自变量的数量事先已知时,例如麦基-格拉斯系列或面粉数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural networks for function approximation
We describe certain results of Mhaskar concerning the approximation capabilities of neural networks with one hidden layer. In particular, these results demonstrate the construction of neural networks evaluating a squashing function or a radial basis function for optimal approximation of the Sobolev spaces. We also report on the application of some of these ideas in the construction of general-purpose networks for the prediction of time series, when the number of independent variables is known in advance, such as the Mackey-Glass series or the flour data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信