Muhammad Ibrahim Wasiq Khan, Eunseok Lee, N. Monroe, A. Chandrakasan, R. Han
{"title":"一种用于超小型平台的双天线、263 ghz CMOS能量采集器,在−8 dBm输入功率下,rf - dc转换效率为13.6%","authors":"Muhammad Ibrahim Wasiq Khan, Eunseok Lee, N. Monroe, A. Chandrakasan, R. Han","doi":"10.1109/RFIC54546.2022.9863171","DOIUrl":null,"url":null,"abstract":"This paper reports a CMOS energy harvester, which operates at so far the highest reported frequency (263 GHz) in order to realize wireless powering of ultra-miniaturized platforms. To maximize the THz-to-DC conversion efficiency, n, at low available radiation power, the harvester not only utilizes a high-speed 22-nm FinFET transistor but also achieves the optimal operating conditions of the device. In specific, the circuit enables self-gate biasing; and through a dual-antenna topology, it drives the transistor drain and gate terminals with both optimal voltage phase difference and power ratio simultaneously and precisely. With a low input power of −8 dBm, the harvester achieves 13.6% measured conversion efficiency and delivers 22 µW to a 1- kΩ load. Without relying on any external component, the harvester chip occupies an area of 0.61 × 0.93 mm 2.","PeriodicalId":415294,"journal":{"name":"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Dual-Antenna, 263-GHz Energy Harvester in CMOS for Ultra-Miniaturized Platforms with 13.6% RF-to-DC Conversion Efficiency at −8 dBm Input Power\",\"authors\":\"Muhammad Ibrahim Wasiq Khan, Eunseok Lee, N. Monroe, A. Chandrakasan, R. Han\",\"doi\":\"10.1109/RFIC54546.2022.9863171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a CMOS energy harvester, which operates at so far the highest reported frequency (263 GHz) in order to realize wireless powering of ultra-miniaturized platforms. To maximize the THz-to-DC conversion efficiency, n, at low available radiation power, the harvester not only utilizes a high-speed 22-nm FinFET transistor but also achieves the optimal operating conditions of the device. In specific, the circuit enables self-gate biasing; and through a dual-antenna topology, it drives the transistor drain and gate terminals with both optimal voltage phase difference and power ratio simultaneously and precisely. With a low input power of −8 dBm, the harvester achieves 13.6% measured conversion efficiency and delivers 22 µW to a 1- kΩ load. Without relying on any external component, the harvester chip occupies an area of 0.61 × 0.93 mm 2.\",\"PeriodicalId\":415294,\"journal\":{\"name\":\"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIC54546.2022.9863171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC54546.2022.9863171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Dual-Antenna, 263-GHz Energy Harvester in CMOS for Ultra-Miniaturized Platforms with 13.6% RF-to-DC Conversion Efficiency at −8 dBm Input Power
This paper reports a CMOS energy harvester, which operates at so far the highest reported frequency (263 GHz) in order to realize wireless powering of ultra-miniaturized platforms. To maximize the THz-to-DC conversion efficiency, n, at low available radiation power, the harvester not only utilizes a high-speed 22-nm FinFET transistor but also achieves the optimal operating conditions of the device. In specific, the circuit enables self-gate biasing; and through a dual-antenna topology, it drives the transistor drain and gate terminals with both optimal voltage phase difference and power ratio simultaneously and precisely. With a low input power of −8 dBm, the harvester achieves 13.6% measured conversion efficiency and delivers 22 µW to a 1- kΩ load. Without relying on any external component, the harvester chip occupies an area of 0.61 × 0.93 mm 2.