基于重用距离的缓存性能估计建模框架

Xiaoyue Pan, B. Jonsson
{"title":"基于重用距离的缓存性能估计建模框架","authors":"Xiaoyue Pan, B. Jonsson","doi":"10.1109/ISPASS.2015.7095785","DOIUrl":null,"url":null,"abstract":"We develop an analytical modeling framework for efficient prediction of cache miss ratios based on reuse distance distributions. The only input needed for our predictions is the reuse distance distribution of a program execution: previous work has shown that they can be obtained with very small overhead by sampling from native executions. This should be contrasted with previous approaches that base predictions on stack distance distributions, whose collection need significantly larger overhead or additional hardware support. The predictions are based on a uniform modeling framework which can be specialized for a variety of cache replacement policies, including Random, LRU, PLRU, and MRU (aka. bit-PLRU), and for arbitrary values of cache size and cache associativity. We evaluate our modeling framework with the SPEC CPU 2006 benchmark suite over a set of cache configurations with varying cache size, associativity and replacement policy. The introduced inaccuracies were generally below 1% for the model of the policy, and additionally around 2% when set-local reuse distances must be estimated from global reuse distance distributions. The inaccuracy introduced by sampling is significantly smaller.","PeriodicalId":189378,"journal":{"name":"2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","volume":"454 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"A modeling framework for reuse distance-based estimation of cache performance\",\"authors\":\"Xiaoyue Pan, B. Jonsson\",\"doi\":\"10.1109/ISPASS.2015.7095785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop an analytical modeling framework for efficient prediction of cache miss ratios based on reuse distance distributions. The only input needed for our predictions is the reuse distance distribution of a program execution: previous work has shown that they can be obtained with very small overhead by sampling from native executions. This should be contrasted with previous approaches that base predictions on stack distance distributions, whose collection need significantly larger overhead or additional hardware support. The predictions are based on a uniform modeling framework which can be specialized for a variety of cache replacement policies, including Random, LRU, PLRU, and MRU (aka. bit-PLRU), and for arbitrary values of cache size and cache associativity. We evaluate our modeling framework with the SPEC CPU 2006 benchmark suite over a set of cache configurations with varying cache size, associativity and replacement policy. The introduced inaccuracies were generally below 1% for the model of the policy, and additionally around 2% when set-local reuse distances must be estimated from global reuse distance distributions. The inaccuracy introduced by sampling is significantly smaller.\",\"PeriodicalId\":189378,\"journal\":{\"name\":\"2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)\",\"volume\":\"454 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPASS.2015.7095785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2015.7095785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

我们开发了一个基于重用距离分布的有效预测缓存缺失率的分析建模框架。我们预测所需的唯一输入是程序执行的重用距离分布:以前的工作表明,通过从本机执行中抽样,可以以非常小的开销获得它们。这应该与以前基于堆栈距离分布的预测方法形成对比,后者的收集需要更大的开销或额外的硬件支持。预测基于统一的建模框架,该框架可以专门用于各种缓存替换策略,包括Random, LRU, PLRU和MRU。bit-PLRU),以及缓存大小和缓存关联性的任意值。我们使用SPEC CPU 2006基准测试套件对一组缓存配置进行评估,这些配置具有不同的缓存大小、关联性和替换策略。对于策略模型,引入的不准确性通常低于1%,当必须从全局重用距离分布估计集局部重用距离时,引入的不准确性约为2%。由抽样引入的不准确性明显更小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modeling framework for reuse distance-based estimation of cache performance
We develop an analytical modeling framework for efficient prediction of cache miss ratios based on reuse distance distributions. The only input needed for our predictions is the reuse distance distribution of a program execution: previous work has shown that they can be obtained with very small overhead by sampling from native executions. This should be contrasted with previous approaches that base predictions on stack distance distributions, whose collection need significantly larger overhead or additional hardware support. The predictions are based on a uniform modeling framework which can be specialized for a variety of cache replacement policies, including Random, LRU, PLRU, and MRU (aka. bit-PLRU), and for arbitrary values of cache size and cache associativity. We evaluate our modeling framework with the SPEC CPU 2006 benchmark suite over a set of cache configurations with varying cache size, associativity and replacement policy. The introduced inaccuracies were generally below 1% for the model of the policy, and additionally around 2% when set-local reuse distances must be estimated from global reuse distance distributions. The inaccuracy introduced by sampling is significantly smaller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信