迭代的救济

B. Draper, Carol Kaito, J. Bins
{"title":"迭代的救济","authors":"B. Draper, Carol Kaito, J. Bins","doi":"10.1109/cvprw.2003.10065","DOIUrl":null,"url":null,"abstract":"Feature weighting algorithms assign weights to features according to their relevance to a particular task. Unfortunately, the best-known feature weighting algorithm, ReliefF, is biased. It decreases the relevance of some features and increases the relevance of others when irrelevant attributes are added to the data set. This paper presents an improved version of the algorithm, Iterative Relief, and shows on synthetic data that it removes the bias found in ReliefF. This paper also shows that Iterative Relief outperforms ReliefF on the task of cat and dog discrimination, using real images.","PeriodicalId":121249,"journal":{"name":"2003 Conference on Computer Vision and Pattern Recognition Workshop","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Iterative Relief\",\"authors\":\"B. Draper, Carol Kaito, J. Bins\",\"doi\":\"10.1109/cvprw.2003.10065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature weighting algorithms assign weights to features according to their relevance to a particular task. Unfortunately, the best-known feature weighting algorithm, ReliefF, is biased. It decreases the relevance of some features and increases the relevance of others when irrelevant attributes are added to the data set. This paper presents an improved version of the algorithm, Iterative Relief, and shows on synthetic data that it removes the bias found in ReliefF. This paper also shows that Iterative Relief outperforms ReliefF on the task of cat and dog discrimination, using real images.\",\"PeriodicalId\":121249,\"journal\":{\"name\":\"2003 Conference on Computer Vision and Pattern Recognition Workshop\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 Conference on Computer Vision and Pattern Recognition Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cvprw.2003.10065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 Conference on Computer Vision and Pattern Recognition Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvprw.2003.10065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

特征加权算法根据特征与特定任务的相关性为特征分配权重。不幸的是,最著名的特征加权算法ReliefF是有偏见的。当向数据集中添加不相关的属性时,它会降低某些特征的相关性,并增加其他特征的相关性。本文提出了该算法的改进版本,迭代救济,并在合成数据上显示,它消除了救济中发现的偏差。本文还表明,使用真实图像,迭代救济在猫和狗的识别任务上优于Relief。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative Relief
Feature weighting algorithms assign weights to features according to their relevance to a particular task. Unfortunately, the best-known feature weighting algorithm, ReliefF, is biased. It decreases the relevance of some features and increases the relevance of others when irrelevant attributes are added to the data set. This paper presents an improved version of the algorithm, Iterative Relief, and shows on synthetic data that it removes the bias found in ReliefF. This paper also shows that Iterative Relief outperforms ReliefF on the task of cat and dog discrimination, using real images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信