基于自适应牛顿-蒙特卡罗和多项式替代的成品率优化

Mona Fuhrländer, Niklas Georg, U. Römer, S. Schöps
{"title":"基于自适应牛顿-蒙特卡罗和多项式替代的成品率优化","authors":"Mona Fuhrländer, Niklas Georg, U. Römer, S. Schöps","doi":"10.1615/int.j.uncertaintyquantification.2020033344","DOIUrl":null,"url":null,"abstract":"In this paper we present an algorithm for yield estimation and optimization exploiting Hessian based optimization methods, an adaptive Monte Carlo (MC) strategy, polynomial surrogates and several error indicators. Yield estimation is used to quantify the impact of uncertainty in a manufacturing process. Since computational efficiency is one main issue in uncertainty quantification, we propose a hybrid method, where a large part of a MC sample is evaluated with a surrogate model, and only a small subset of the sample is re-evaluated with a high fidelity finite element model. In order to determine this critical fraction of the sample, an adjoint error indicator is used for both the surrogate error and the finite element error. For yield optimization we propose an adaptive Newton-MC method. We reduce computational effort and control the MC error by adaptively increasing the sample size. The proposed method minimizes the impact of uncertainty by optimizing the yield. It allows to control the finite element error, surrogate error and MC error. At the same time it is much more efficient than standard MC approaches combined with standard Newton algorithms.","PeriodicalId":178066,"journal":{"name":"arXiv: Computational Engineering, Finance, and Science","volume":"290 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"YIELD OPTIMIZATION BASED ON ADAPTIVE NEWTON-MONTE CARLO AND POLYNOMIAL SURROGATES\",\"authors\":\"Mona Fuhrländer, Niklas Georg, U. Römer, S. Schöps\",\"doi\":\"10.1615/int.j.uncertaintyquantification.2020033344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an algorithm for yield estimation and optimization exploiting Hessian based optimization methods, an adaptive Monte Carlo (MC) strategy, polynomial surrogates and several error indicators. Yield estimation is used to quantify the impact of uncertainty in a manufacturing process. Since computational efficiency is one main issue in uncertainty quantification, we propose a hybrid method, where a large part of a MC sample is evaluated with a surrogate model, and only a small subset of the sample is re-evaluated with a high fidelity finite element model. In order to determine this critical fraction of the sample, an adjoint error indicator is used for both the surrogate error and the finite element error. For yield optimization we propose an adaptive Newton-MC method. We reduce computational effort and control the MC error by adaptively increasing the sample size. The proposed method minimizes the impact of uncertainty by optimizing the yield. It allows to control the finite element error, surrogate error and MC error. At the same time it is much more efficient than standard MC approaches combined with standard Newton algorithms.\",\"PeriodicalId\":178066,\"journal\":{\"name\":\"arXiv: Computational Engineering, Finance, and Science\",\"volume\":\"290 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computational Engineering, Finance, and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/int.j.uncertaintyquantification.2020033344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2020033344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种利用基于Hessian的优化方法、自适应蒙特卡罗(MC)策略、多项式代理和几种误差指标进行产量估计和优化的算法。成品率估计用于量化制造过程中不确定性的影响。由于计算效率是不确定性量化的一个主要问题,我们提出了一种混合方法,其中大部分MC样本使用代理模型进行评估,只有一小部分样本使用高保真度有限元模型进行重新评估。为了确定样品的这个临界分数,对代理误差和有限元误差都使用伴随误差指示器。为了优化成品率,我们提出了一种自适应牛顿- mc方法。我们通过自适应地增加样本量来减少计算量并控制MC误差。该方法通过优化产率使不确定性影响最小化。它允许控制有限元误差,代理误差和MC误差。同时,它比标准MC方法与标准牛顿算法相结合的效率要高得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
YIELD OPTIMIZATION BASED ON ADAPTIVE NEWTON-MONTE CARLO AND POLYNOMIAL SURROGATES
In this paper we present an algorithm for yield estimation and optimization exploiting Hessian based optimization methods, an adaptive Monte Carlo (MC) strategy, polynomial surrogates and several error indicators. Yield estimation is used to quantify the impact of uncertainty in a manufacturing process. Since computational efficiency is one main issue in uncertainty quantification, we propose a hybrid method, where a large part of a MC sample is evaluated with a surrogate model, and only a small subset of the sample is re-evaluated with a high fidelity finite element model. In order to determine this critical fraction of the sample, an adjoint error indicator is used for both the surrogate error and the finite element error. For yield optimization we propose an adaptive Newton-MC method. We reduce computational effort and control the MC error by adaptively increasing the sample size. The proposed method minimizes the impact of uncertainty by optimizing the yield. It allows to control the finite element error, surrogate error and MC error. At the same time it is much more efficient than standard MC approaches combined with standard Newton algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信