比较应用于查找表和纳米计算的随机逻辑时容错增强的健壮性

Y. Dotan, Orgad Chen, Gil Katz
{"title":"比较应用于查找表和纳米计算的随机逻辑时容错增强的健壮性","authors":"Y. Dotan, Orgad Chen, Gil Katz","doi":"10.1109/ASAP.2010.5540775","DOIUrl":null,"url":null,"abstract":"New challenges are arising in the design of computer systems with the emergence of new nanometer-scale devices and sophisticated fabrication techniques. Unfortunately, the yield, reliability, and drive characteristics of these new deep-submicron and nano-scale devices are different from the corresponding characteristics of conventional CMOS devices. It is expected that future circuit technologies will have substantially higher defect densities and dynamic fault rates. There is no consensus yet on which technology will be selected and which of the traditional logic designs has an advantage for fault tolerant nano-computing. In this work, we compare the robustness of several fault-tolerant approaches applied to lookup table design and random logic design for a wide range of fault rates. Implementing fault tolerance in a circuit using TMR and Hamming and Hsiao error correcting codes with a lookup table design style gives better fault coverage compared with a random gate design style. TMR is the best fault-tolerance technique when implemented using the lookup table design. However, TMR was the worst technique for fault rates greater than 0.5% when implemented using random logic design and no gate level is fault free.","PeriodicalId":175846,"journal":{"name":"ASAP 2010 - 21st IEEE International Conference on Application-specific Systems, Architectures and Processors","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparing the robustness of fault-tolerant enhancements when applied to lookup tables and random logic for nano-computing\",\"authors\":\"Y. Dotan, Orgad Chen, Gil Katz\",\"doi\":\"10.1109/ASAP.2010.5540775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New challenges are arising in the design of computer systems with the emergence of new nanometer-scale devices and sophisticated fabrication techniques. Unfortunately, the yield, reliability, and drive characteristics of these new deep-submicron and nano-scale devices are different from the corresponding characteristics of conventional CMOS devices. It is expected that future circuit technologies will have substantially higher defect densities and dynamic fault rates. There is no consensus yet on which technology will be selected and which of the traditional logic designs has an advantage for fault tolerant nano-computing. In this work, we compare the robustness of several fault-tolerant approaches applied to lookup table design and random logic design for a wide range of fault rates. Implementing fault tolerance in a circuit using TMR and Hamming and Hsiao error correcting codes with a lookup table design style gives better fault coverage compared with a random gate design style. TMR is the best fault-tolerance technique when implemented using the lookup table design. However, TMR was the worst technique for fault rates greater than 0.5% when implemented using random logic design and no gate level is fault free.\",\"PeriodicalId\":175846,\"journal\":{\"name\":\"ASAP 2010 - 21st IEEE International Conference on Application-specific Systems, Architectures and Processors\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASAP 2010 - 21st IEEE International Conference on Application-specific Systems, Architectures and Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.2010.5540775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASAP 2010 - 21st IEEE International Conference on Application-specific Systems, Architectures and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2010.5540775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着新的纳米级器件和复杂的制造技术的出现,计算机系统的设计面临着新的挑战。不幸的是,这些新型深亚微米和纳米级器件的良率、可靠性和驱动特性与传统CMOS器件的相应特性不同。预计未来的电路技术将具有更高的缺陷密度和动态故障率。对于选择哪种技术,以及哪种传统逻辑设计对容错纳米计算具有优势,目前还没有达成共识。在这项工作中,我们比较了几种适用于查找表设计和随机逻辑设计的容错方法在广泛的故障率范围内的鲁棒性。与随机门设计风格相比,使用TMR和Hamming and Hsiao纠错码的查找表设计风格在电路中实现容错,可以提供更好的故障覆盖率。当使用查找表设计实现时,TMR是最好的容错技术。然而,当使用随机逻辑设计实现并且没有门电平是无故障时,TMR是故障率大于0.5%的最差技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing the robustness of fault-tolerant enhancements when applied to lookup tables and random logic for nano-computing
New challenges are arising in the design of computer systems with the emergence of new nanometer-scale devices and sophisticated fabrication techniques. Unfortunately, the yield, reliability, and drive characteristics of these new deep-submicron and nano-scale devices are different from the corresponding characteristics of conventional CMOS devices. It is expected that future circuit technologies will have substantially higher defect densities and dynamic fault rates. There is no consensus yet on which technology will be selected and which of the traditional logic designs has an advantage for fault tolerant nano-computing. In this work, we compare the robustness of several fault-tolerant approaches applied to lookup table design and random logic design for a wide range of fault rates. Implementing fault tolerance in a circuit using TMR and Hamming and Hsiao error correcting codes with a lookup table design style gives better fault coverage compared with a random gate design style. TMR is the best fault-tolerance technique when implemented using the lookup table design. However, TMR was the worst technique for fault rates greater than 0.5% when implemented using random logic design and no gate level is fault free.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信