李亚普诺夫的无扰动运动的稳定性

Natalia Neagu, M. Popa
{"title":"李亚普诺夫的无扰动运动的稳定性","authors":"Natalia Neagu, M. Popa","doi":"10.36120/2587-3644.v12i2.74-81","DOIUrl":null,"url":null,"abstract":"There were obtained the conditions of stability after Lyapunov of the unper-turbed motion for the system S3 (1,3) in the non-critical case. It was constructed the Lyapunov series for the ternary differential system S3 (1,3) of Darboux type in the critical case and determined the conditions of stability of the unperturbed motion governed by this system.","PeriodicalId":340784,"journal":{"name":"Acta et commentationes: Ştiinţe Exacte şi ale Naturii","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lyapunov’s stability of the unperturbed motion governed bythe\",\"authors\":\"Natalia Neagu, M. Popa\",\"doi\":\"10.36120/2587-3644.v12i2.74-81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There were obtained the conditions of stability after Lyapunov of the unper-turbed motion for the system S3 (1,3) in the non-critical case. It was constructed the Lyapunov series for the ternary differential system S3 (1,3) of Darboux type in the critical case and determined the conditions of stability of the unperturbed motion governed by this system.\",\"PeriodicalId\":340784,\"journal\":{\"name\":\"Acta et commentationes: Ştiinţe Exacte şi ale Naturii\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et commentationes: Ştiinţe Exacte şi ale Naturii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36120/2587-3644.v12i2.74-81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et commentationes: Ştiinţe Exacte şi ale Naturii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36120/2587-3644.v12i2.74-81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在非临界情况下,得到了系统S3(1,3)的无扰动运动的Lyapunov后稳定条件。在临界情况下构造了Darboux型三元微分系统S3(1,3)的Lyapunov级数,并确定了该系统所控制的无扰动运动的稳定性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lyapunov’s stability of the unperturbed motion governed bythe
There were obtained the conditions of stability after Lyapunov of the unper-turbed motion for the system S3 (1,3) in the non-critical case. It was constructed the Lyapunov series for the ternary differential system S3 (1,3) of Darboux type in the critical case and determined the conditions of stability of the unperturbed motion governed by this system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信