{"title":"应用于心脏灌注的孔隙力学迭代拟牛顿解","authors":"J. Both, Nicolas A. Barnafi","doi":"10.4995/yic2021.2021.12324","DOIUrl":null,"url":null,"abstract":"Sequential block-partitioned solvers have in the recent past been quite popular for multi-physics and in particular poroelasticity models. Such enable tailored solver technology for the respective single-physics problems via iterative coupling, as well as suggest suitable block-preconditioners for monolithic solvers.In this talk, we focus on a thermodynamically consistent poroelasticity model recently proposed. It extends the classical quasi-static Biot equations by incoporating inertia contributions in both solid and fluid equations, aiming at biomedical applications; for instance, the perfusion of the heart.Following ideas and techniques from previous works, we present block-partitioned solvers for the fully dynamic poroelasticity model supported by theoretical convergence analysis.","PeriodicalId":406819,"journal":{"name":"Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ITERATIVE QUASI-NEWTON SOLVERS FOR POROMECHANICS APPLIED TO HEART PERFUSION\",\"authors\":\"J. Both, Nicolas A. Barnafi\",\"doi\":\"10.4995/yic2021.2021.12324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sequential block-partitioned solvers have in the recent past been quite popular for multi-physics and in particular poroelasticity models. Such enable tailored solver technology for the respective single-physics problems via iterative coupling, as well as suggest suitable block-preconditioners for monolithic solvers.In this talk, we focus on a thermodynamically consistent poroelasticity model recently proposed. It extends the classical quasi-static Biot equations by incoporating inertia contributions in both solid and fluid equations, aiming at biomedical applications; for instance, the perfusion of the heart.Following ideas and techniques from previous works, we present block-partitioned solvers for the fully dynamic poroelasticity model supported by theoretical convergence analysis.\",\"PeriodicalId\":406819,\"journal\":{\"name\":\"Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/yic2021.2021.12324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/yic2021.2021.12324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ITERATIVE QUASI-NEWTON SOLVERS FOR POROMECHANICS APPLIED TO HEART PERFUSION
Sequential block-partitioned solvers have in the recent past been quite popular for multi-physics and in particular poroelasticity models. Such enable tailored solver technology for the respective single-physics problems via iterative coupling, as well as suggest suitable block-preconditioners for monolithic solvers.In this talk, we focus on a thermodynamically consistent poroelasticity model recently proposed. It extends the classical quasi-static Biot equations by incoporating inertia contributions in both solid and fluid equations, aiming at biomedical applications; for instance, the perfusion of the heart.Following ideas and techniques from previous works, we present block-partitioned solvers for the fully dynamic poroelasticity model supported by theoretical convergence analysis.