UChooBoost:使用扩展数据表达式的基于集成的算法

A. Kolesnikova, Dong-Hun Seo, W. Lee
{"title":"UChooBoost:使用扩展数据表达式的基于集成的算法","authors":"A. Kolesnikova, Dong-Hun Seo, W. Lee","doi":"10.1109/ICADIWT.2008.4664337","DOIUrl":null,"url":null,"abstract":"Bootstrap technique has been successfully used in many signal processing systems for data classification. Some of such systems are based on ensemble-based algorithms. These algorithms use multiple classifiers, generally to improve classification performance: each classifier provides an alternative decision whose combination may provide a superior solution than the one provided by any single classifier. In this paper, UChooBoost, a new supervised learning ensemble-based algorithm for extended data, based on bootstrap technique, is proposed. UChoo classifier is used as weak learner. UChoo classifier gives extended results expression. These results are combined by using new weighted majority voting founded on extended result expression.","PeriodicalId":189871,"journal":{"name":"2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UChooBoost: Ensemble-based algorithm using extended data expression\",\"authors\":\"A. Kolesnikova, Dong-Hun Seo, W. Lee\",\"doi\":\"10.1109/ICADIWT.2008.4664337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bootstrap technique has been successfully used in many signal processing systems for data classification. Some of such systems are based on ensemble-based algorithms. These algorithms use multiple classifiers, generally to improve classification performance: each classifier provides an alternative decision whose combination may provide a superior solution than the one provided by any single classifier. In this paper, UChooBoost, a new supervised learning ensemble-based algorithm for extended data, based on bootstrap technique, is proposed. UChoo classifier is used as weak learner. UChoo classifier gives extended results expression. These results are combined by using new weighted majority voting founded on extended result expression.\",\"PeriodicalId\":189871,\"journal\":{\"name\":\"2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICADIWT.2008.4664337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICADIWT.2008.4664337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自举技术已成功地应用于许多信号处理系统中进行数据分类。其中一些系统是基于基于集成的算法。这些算法使用多个分类器,通常是为了提高分类性能:每个分类器提供一个备选决策,其组合可能比任何单个分类器提供的解决方案更好。本文提出了一种基于自举技术的扩展数据监督学习集成算法UChooBoost。UChoo分类器作为弱学习器。UChoo分类器给出了扩展的结果表达式。这些结果通过基于扩展结果表达式的加权多数投票进行组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UChooBoost: Ensemble-based algorithm using extended data expression
Bootstrap technique has been successfully used in many signal processing systems for data classification. Some of such systems are based on ensemble-based algorithms. These algorithms use multiple classifiers, generally to improve classification performance: each classifier provides an alternative decision whose combination may provide a superior solution than the one provided by any single classifier. In this paper, UChooBoost, a new supervised learning ensemble-based algorithm for extended data, based on bootstrap technique, is proposed. UChoo classifier is used as weak learner. UChoo classifier gives extended results expression. These results are combined by using new weighted majority voting founded on extended result expression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信