{"title":"基于强化学习和ADP的四旋翼飞行器飞行控制研究","authors":"Xueyuan Li, Wentao Xie, Wentao Zhan","doi":"10.1109/ICNISC57059.2022.00061","DOIUrl":null,"url":null,"abstract":"This paper studies the application of Lookup-Table reinforcement learning method into the continuous state space control of quadrotor simulator and designs a attitude controller for the quadrotor simulator based on Q-learning; for the improvement of defects concerning difficulty in the learning algorithm's convergence and low efficiency in learning when Q-learning is faced with large-scale and continuous-space optimized decision, the method of kernel approximate dynamic programming is introduced, Kernel-based Least-Squares Policy Iteration (KLSPI) is proposed, and a controller for the quadrotor simulator is designed based on this algorithm. The experiment shows that the reinforcement learning control method is of fast convergence speed, small steady-state error, strong adaptive ability and good control effect; when dealing with the problem of continuous state space, the Least-Squares Policy Iteration can converge better strategies with fewer training data compared with the traditional method of discretizing state space first.","PeriodicalId":286467,"journal":{"name":"2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Research of Quadrotor Flight Control Based on Reinforcement Learning and ADP\",\"authors\":\"Xueyuan Li, Wentao Xie, Wentao Zhan\",\"doi\":\"10.1109/ICNISC57059.2022.00061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the application of Lookup-Table reinforcement learning method into the continuous state space control of quadrotor simulator and designs a attitude controller for the quadrotor simulator based on Q-learning; for the improvement of defects concerning difficulty in the learning algorithm's convergence and low efficiency in learning when Q-learning is faced with large-scale and continuous-space optimized decision, the method of kernel approximate dynamic programming is introduced, Kernel-based Least-Squares Policy Iteration (KLSPI) is proposed, and a controller for the quadrotor simulator is designed based on this algorithm. The experiment shows that the reinforcement learning control method is of fast convergence speed, small steady-state error, strong adaptive ability and good control effect; when dealing with the problem of continuous state space, the Least-Squares Policy Iteration can converge better strategies with fewer training data compared with the traditional method of discretizing state space first.\",\"PeriodicalId\":286467,\"journal\":{\"name\":\"2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNISC57059.2022.00061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNISC57059.2022.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Research of Quadrotor Flight Control Based on Reinforcement Learning and ADP
This paper studies the application of Lookup-Table reinforcement learning method into the continuous state space control of quadrotor simulator and designs a attitude controller for the quadrotor simulator based on Q-learning; for the improvement of defects concerning difficulty in the learning algorithm's convergence and low efficiency in learning when Q-learning is faced with large-scale and continuous-space optimized decision, the method of kernel approximate dynamic programming is introduced, Kernel-based Least-Squares Policy Iteration (KLSPI) is proposed, and a controller for the quadrotor simulator is designed based on this algorithm. The experiment shows that the reinforcement learning control method is of fast convergence speed, small steady-state error, strong adaptive ability and good control effect; when dealing with the problem of continuous state space, the Least-Squares Policy Iteration can converge better strategies with fewer training data compared with the traditional method of discretizing state space first.