切换LPV控制切换曲面设计的数值优化方法

M. Javadian, R. Nagamune
{"title":"切换LPV控制切换曲面设计的数值优化方法","authors":"M. Javadian, R. Nagamune","doi":"10.1109/ACC.2014.6859427","DOIUrl":null,"url":null,"abstract":"This paper proposes an algorithm to design switching surfaces for the switching linear parameter-varying (LPV) controller with hysteresis switching. The switching surfaces are sought for to optimize the bound of the closed-loop L2-gain performance. An optimization problem is formulated with respect to parameters characterizing Lyapunov matrix variables, local controller matrix variables, and locations of the switching surfaces. Since the problem turns out to be non-convex in terms of these characterizing parameters, a numerical algorithm is given to guarantee the decrease of the cost function value after each iteration. A hybrid method which combines the steepest descent method and Newton's method is employed in each iteration to decide the update direction of switching surface parameters. A simple numerical example is provided to demonstrate the validity of the proposed algorithm.","PeriodicalId":369729,"journal":{"name":"2014 American Control Conference","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A numerical optimization approach to switching surface design for switching LPV control\",\"authors\":\"M. Javadian, R. Nagamune\",\"doi\":\"10.1109/ACC.2014.6859427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an algorithm to design switching surfaces for the switching linear parameter-varying (LPV) controller with hysteresis switching. The switching surfaces are sought for to optimize the bound of the closed-loop L2-gain performance. An optimization problem is formulated with respect to parameters characterizing Lyapunov matrix variables, local controller matrix variables, and locations of the switching surfaces. Since the problem turns out to be non-convex in terms of these characterizing parameters, a numerical algorithm is given to guarantee the decrease of the cost function value after each iteration. A hybrid method which combines the steepest descent method and Newton's method is employed in each iteration to decide the update direction of switching surface parameters. A simple numerical example is provided to demonstrate the validity of the proposed algorithm.\",\"PeriodicalId\":369729,\"journal\":{\"name\":\"2014 American Control Conference\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2014.6859427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2014.6859427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种具有迟滞切换特性的开关线性变参数控制器的开关曲面设计算法。寻找开关面以优化闭环l2增益性能的边界。利用表征李雅普诺夫矩阵变量、局部控制器矩阵变量和切换面位置的参数,提出了优化问题。由于问题在这些特征参数方面是非凸的,因此给出了保证每次迭代后代价函数值减小的数值算法。在每次迭代中采用最陡下降法和牛顿法相结合的混合方法来确定切换曲面参数的更新方向。通过一个简单的算例验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A numerical optimization approach to switching surface design for switching LPV control
This paper proposes an algorithm to design switching surfaces for the switching linear parameter-varying (LPV) controller with hysteresis switching. The switching surfaces are sought for to optimize the bound of the closed-loop L2-gain performance. An optimization problem is formulated with respect to parameters characterizing Lyapunov matrix variables, local controller matrix variables, and locations of the switching surfaces. Since the problem turns out to be non-convex in terms of these characterizing parameters, a numerical algorithm is given to guarantee the decrease of the cost function value after each iteration. A hybrid method which combines the steepest descent method and Newton's method is employed in each iteration to decide the update direction of switching surface parameters. A simple numerical example is provided to demonstrate the validity of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信