贪心秩更新结合黎曼下降法进行低秩优化

André Uschmajew, Bart Vandereycken
{"title":"贪心秩更新结合黎曼下降法进行低秩优化","authors":"André Uschmajew, Bart Vandereycken","doi":"10.1109/SAMPTA.2015.7148925","DOIUrl":null,"url":null,"abstract":"We present a rank-adaptive optimization strategy for finding low-rank solutions of matrix optimization problems involving a quadratic objective function. The algorithm combines a greedy outer iteration that increases the rank and a smooth Riemannian algorithm that further optimizes the cost function on a fixed-rank manifold. While such a strategy is not especially novel, we show that it can be interpreted as a perturbed gradient descent algorithms or as a simple warm-starting strategy of a projected gradient algorithm on the variety of matrices of bounded rank. In addition, our numerical experiments show that the strategy is very efficient for recovering full rank but highly ill-conditioned matrices that have small numerical rank.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Greedy rank updates combined with Riemannian descent methods for low-rank optimization\",\"authors\":\"André Uschmajew, Bart Vandereycken\",\"doi\":\"10.1109/SAMPTA.2015.7148925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a rank-adaptive optimization strategy for finding low-rank solutions of matrix optimization problems involving a quadratic objective function. The algorithm combines a greedy outer iteration that increases the rank and a smooth Riemannian algorithm that further optimizes the cost function on a fixed-rank manifold. While such a strategy is not especially novel, we show that it can be interpreted as a perturbed gradient descent algorithms or as a simple warm-starting strategy of a projected gradient algorithm on the variety of matrices of bounded rank. In addition, our numerical experiments show that the strategy is very efficient for recovering full rank but highly ill-conditioned matrices that have small numerical rank.\",\"PeriodicalId\":311830,\"journal\":{\"name\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMPTA.2015.7148925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文提出了一种寻找包含二次目标函数的矩阵优化问题的低秩解的秩自适应优化策略。该算法结合了增加秩的贪婪外部迭代和进一步优化定秩流形上的代价函数的光滑黎曼算法。虽然这种策略并不是特别新颖,但我们表明它可以被解释为扰动梯度下降算法或作为一个简单的热启动策略的投影梯度算法在各种有界秩矩阵上。此外,我们的数值实验表明,该策略对于恢复具有小数值秩的满秩但高度病态的矩阵非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Greedy rank updates combined with Riemannian descent methods for low-rank optimization
We present a rank-adaptive optimization strategy for finding low-rank solutions of matrix optimization problems involving a quadratic objective function. The algorithm combines a greedy outer iteration that increases the rank and a smooth Riemannian algorithm that further optimizes the cost function on a fixed-rank manifold. While such a strategy is not especially novel, we show that it can be interpreted as a perturbed gradient descent algorithms or as a simple warm-starting strategy of a projected gradient algorithm on the variety of matrices of bounded rank. In addition, our numerical experiments show that the strategy is very efficient for recovering full rank but highly ill-conditioned matrices that have small numerical rank.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信