{"title":"将流点集群查询为区域","authors":"Chengyang Zhang, Y. Huang","doi":"10.1145/1878500.1878510","DOIUrl":null,"url":null,"abstract":"This paper focuses on one important type of geo-streaming data - point geo-streams. Many interesting applications require selected discrete points with similar observations to be clustered according to spatial proximity and further elevated into higher-level spatial regions. Querying streaming point clusters as regions directly in a geo-stream database has many benefits, but is also very challenging. We propose two query optimization strategies, namely semantics-based optimization and incremental optimization for answering queries involving both point geo-streams and static data set. The experimental results on a streaming meteorological data set demonstrate the effectiveness and the efficiency of the query processing techniques. Compared with the baseline methods, our optimization methods can reduce the total execution time by more than an order of magnitude.","PeriodicalId":190366,"journal":{"name":"International Workshop on GeoStreaming","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Querying streaming point clusters as regions\",\"authors\":\"Chengyang Zhang, Y. Huang\",\"doi\":\"10.1145/1878500.1878510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on one important type of geo-streaming data - point geo-streams. Many interesting applications require selected discrete points with similar observations to be clustered according to spatial proximity and further elevated into higher-level spatial regions. Querying streaming point clusters as regions directly in a geo-stream database has many benefits, but is also very challenging. We propose two query optimization strategies, namely semantics-based optimization and incremental optimization for answering queries involving both point geo-streams and static data set. The experimental results on a streaming meteorological data set demonstrate the effectiveness and the efficiency of the query processing techniques. Compared with the baseline methods, our optimization methods can reduce the total execution time by more than an order of magnitude.\",\"PeriodicalId\":190366,\"journal\":{\"name\":\"International Workshop on GeoStreaming\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on GeoStreaming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1878500.1878510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on GeoStreaming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1878500.1878510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper focuses on one important type of geo-streaming data - point geo-streams. Many interesting applications require selected discrete points with similar observations to be clustered according to spatial proximity and further elevated into higher-level spatial regions. Querying streaming point clusters as regions directly in a geo-stream database has many benefits, but is also very challenging. We propose two query optimization strategies, namely semantics-based optimization and incremental optimization for answering queries involving both point geo-streams and static data set. The experimental results on a streaming meteorological data set demonstrate the effectiveness and the efficiency of the query processing techniques. Compared with the baseline methods, our optimization methods can reduce the total execution time by more than an order of magnitude.