基于物联网的森林火灾实时预测框架

A. Aljumah
{"title":"基于物联网的森林火灾实时预测框架","authors":"A. Aljumah","doi":"10.15837/ijccc.2022.3.4371","DOIUrl":null,"url":null,"abstract":"Wildfires are one of the most devastating catastrophes and can inflict tremendous losses to life and nature. Moreover, the loss of civilization is incomprehensible, potentially extending suddenly over vast land sectors. Global warming has contributed to increased forest fires, but it needs immediate attention from the organizations involved. This analysis aims to forecast forest fires to reduce losses and take decisive measures in the direction of protection. Specifically, this study suggests an energy-efficient IoT architecture for the early detection of wildfires backed by fog-cloud computing technologies. To evaluate the repeatable information obtained from IoT sensors in a time-sensitive manner, Jaccard similarity analysis is used. This data is assessed in the fog processing layer and reduces the single value of multidimensional data called the Forest Fire Index. Finally, based on Wildfire Triggering Criteria, the Artificial Neural Network (ANN) is used to simulate the susceptibility of the forest area. ANN are intelligent techniques for inferring future outputs as these can be made hybrid with fuzzy methods for decision-modeling. For productive visualization of the geographical location of wildfire vulnerability, the Self-Organized Mapping Technique is used. Simulation of the implementation is done over multiple datasets. For total efficiency assessment, outcomes are contrasted in comparison to other techniques.","PeriodicalId":179619,"journal":{"name":"Int. J. Comput. Commun. Control","volume":"620 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IoT-inspired Framework for Real-time Prediction of Forest Fire\",\"authors\":\"A. Aljumah\",\"doi\":\"10.15837/ijccc.2022.3.4371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wildfires are one of the most devastating catastrophes and can inflict tremendous losses to life and nature. Moreover, the loss of civilization is incomprehensible, potentially extending suddenly over vast land sectors. Global warming has contributed to increased forest fires, but it needs immediate attention from the organizations involved. This analysis aims to forecast forest fires to reduce losses and take decisive measures in the direction of protection. Specifically, this study suggests an energy-efficient IoT architecture for the early detection of wildfires backed by fog-cloud computing technologies. To evaluate the repeatable information obtained from IoT sensors in a time-sensitive manner, Jaccard similarity analysis is used. This data is assessed in the fog processing layer and reduces the single value of multidimensional data called the Forest Fire Index. Finally, based on Wildfire Triggering Criteria, the Artificial Neural Network (ANN) is used to simulate the susceptibility of the forest area. ANN are intelligent techniques for inferring future outputs as these can be made hybrid with fuzzy methods for decision-modeling. For productive visualization of the geographical location of wildfire vulnerability, the Self-Organized Mapping Technique is used. Simulation of the implementation is done over multiple datasets. For total efficiency assessment, outcomes are contrasted in comparison to other techniques.\",\"PeriodicalId\":179619,\"journal\":{\"name\":\"Int. J. Comput. Commun. Control\",\"volume\":\"620 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Commun. Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15837/ijccc.2022.3.4371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Commun. Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15837/ijccc.2022.3.4371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

野火是最具破坏性的灾难之一,可以给生命和自然造成巨大损失。此外,文明的丧失是不可理解的,可能会突然蔓延到大片土地上。全球变暖导致森林火灾增加,但这需要相关组织立即予以关注。该分析旨在预测森林火灾,减少损失,并采取果断的保护措施。具体而言,本研究提出了一种基于雾云计算技术的节能物联网架构,用于早期检测野火。为了以时间敏感的方式评估从物联网传感器获得的可重复信息,使用了Jaccard相似性分析。该数据在雾处理层进行评估,并减少称为森林火灾指数的多维数据的单一值。最后,基于野火触发准则,利用人工神经网络(ANN)对林区的易感性进行模拟。人工神经网络是用于推断未来输出的智能技术,因为它们可以与模糊方法混合用于决策建模。为了有效地可视化野火易损性的地理位置,使用了自组织映射技术。实现的模拟是在多个数据集上完成的。对于总效率评估,将结果与其他技术进行对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IoT-inspired Framework for Real-time Prediction of Forest Fire
Wildfires are one of the most devastating catastrophes and can inflict tremendous losses to life and nature. Moreover, the loss of civilization is incomprehensible, potentially extending suddenly over vast land sectors. Global warming has contributed to increased forest fires, but it needs immediate attention from the organizations involved. This analysis aims to forecast forest fires to reduce losses and take decisive measures in the direction of protection. Specifically, this study suggests an energy-efficient IoT architecture for the early detection of wildfires backed by fog-cloud computing technologies. To evaluate the repeatable information obtained from IoT sensors in a time-sensitive manner, Jaccard similarity analysis is used. This data is assessed in the fog processing layer and reduces the single value of multidimensional data called the Forest Fire Index. Finally, based on Wildfire Triggering Criteria, the Artificial Neural Network (ANN) is used to simulate the susceptibility of the forest area. ANN are intelligent techniques for inferring future outputs as these can be made hybrid with fuzzy methods for decision-modeling. For productive visualization of the geographical location of wildfire vulnerability, the Self-Organized Mapping Technique is used. Simulation of the implementation is done over multiple datasets. For total efficiency assessment, outcomes are contrasted in comparison to other techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信