A. Hamidian, R. Ebelt, D. Shmakov, M. Vossiek, Tao Zhang, V. Subramanian, G. Boeck
{"title":"24ghz CMOS收发器,具有新颖的T/R开关概念,可用于室内定位","authors":"A. Hamidian, R. Ebelt, D. Shmakov, M. Vossiek, Tao Zhang, V. Subramanian, G. Boeck","doi":"10.1109/RFIC.2013.6569586","DOIUrl":null,"url":null,"abstract":"This paper presents a 130 nm CMOS transceiver for 24 GHz wireless indoor localization. Due to a novel Rx/Tx switching concept RF-losses between receiver/transmitter and antenna could be reduced and the T/R isolation was drastically improved. The measured transceiver chip achieves an output power and noise figure of >5 dBm and <;6 dB, respectively with 2 mm2 total chip size. The complete transceiver consumes 16 mW in the Rxand 26 mW in the Tx-mode. The RF-transceiver-chip was integrated with a DSP-unit and mounted on a PCB for wireless indoor localization demonstration. The measured results show a distance measurement precision in the cm-range.","PeriodicalId":203521,"journal":{"name":"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"24 GHz CMOS transceiver with novel T/R switching concept for indoor localization\",\"authors\":\"A. Hamidian, R. Ebelt, D. Shmakov, M. Vossiek, Tao Zhang, V. Subramanian, G. Boeck\",\"doi\":\"10.1109/RFIC.2013.6569586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a 130 nm CMOS transceiver for 24 GHz wireless indoor localization. Due to a novel Rx/Tx switching concept RF-losses between receiver/transmitter and antenna could be reduced and the T/R isolation was drastically improved. The measured transceiver chip achieves an output power and noise figure of >5 dBm and <;6 dB, respectively with 2 mm2 total chip size. The complete transceiver consumes 16 mW in the Rxand 26 mW in the Tx-mode. The RF-transceiver-chip was integrated with a DSP-unit and mounted on a PCB for wireless indoor localization demonstration. The measured results show a distance measurement precision in the cm-range.\",\"PeriodicalId\":203521,\"journal\":{\"name\":\"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIC.2013.6569586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2013.6569586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
24 GHz CMOS transceiver with novel T/R switching concept for indoor localization
This paper presents a 130 nm CMOS transceiver for 24 GHz wireless indoor localization. Due to a novel Rx/Tx switching concept RF-losses between receiver/transmitter and antenna could be reduced and the T/R isolation was drastically improved. The measured transceiver chip achieves an output power and noise figure of >5 dBm and <;6 dB, respectively with 2 mm2 total chip size. The complete transceiver consumes 16 mW in the Rxand 26 mW in the Tx-mode. The RF-transceiver-chip was integrated with a DSP-unit and mounted on a PCB for wireless indoor localization demonstration. The measured results show a distance measurement precision in the cm-range.