具有功率约束的分布式建筑温度控制

G. Obando, N. Quijano, N. Rakoto-Ravalontsalama
{"title":"具有功率约束的分布式建筑温度控制","authors":"G. Obando, N. Quijano, N. Rakoto-Ravalontsalama","doi":"10.1109/ECC.2014.6862330","DOIUrl":null,"url":null,"abstract":"Generally, heating, cooling and air conditioning (HVAC) systems are designed to handle worst case loads, and this over-design of HVAC equipment is one of the main reasons for building energy inefficiency. When the HVAC system is not over-designed, there exists a trade-off between the comfort of the building's occupants and the available heating/cooling power at critical load hours. We propose a distributed approach that maximizes the comfort of the building's occupants under several power constraints. We prove by means of graph theoretical tools and passivity analysis, that the proposed controller asymptotically reaches an optimal equilibrium without the need of full information. Finally, some simulations and comparisons are presented to illustrate the performance of our method.","PeriodicalId":251538,"journal":{"name":"2014 European Control Conference (ECC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Distributed building temperature control with power constraints\",\"authors\":\"G. Obando, N. Quijano, N. Rakoto-Ravalontsalama\",\"doi\":\"10.1109/ECC.2014.6862330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generally, heating, cooling and air conditioning (HVAC) systems are designed to handle worst case loads, and this over-design of HVAC equipment is one of the main reasons for building energy inefficiency. When the HVAC system is not over-designed, there exists a trade-off between the comfort of the building's occupants and the available heating/cooling power at critical load hours. We propose a distributed approach that maximizes the comfort of the building's occupants under several power constraints. We prove by means of graph theoretical tools and passivity analysis, that the proposed controller asymptotically reaches an optimal equilibrium without the need of full information. Finally, some simulations and comparisons are presented to illustrate the performance of our method.\",\"PeriodicalId\":251538,\"journal\":{\"name\":\"2014 European Control Conference (ECC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECC.2014.6862330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECC.2014.6862330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

一般来说,供暖、制冷和空调(HVAC)系统的设计是为了处理最坏的情况负荷,而这种过度设计的HVAC设备是建筑能源效率低下的主要原因之一。当暖通空调系统没有过度设计时,在关键负荷时间,建筑物居住者的舒适度和可用的加热/冷却功率之间存在权衡。我们提出了一种分布式的方法,在多种电力限制下,最大限度地提高建筑居住者的舒适度。利用图论工具和无源性分析证明了所提出的控制器在不需要完全信息的情况下渐近达到最优平衡点。最后,通过仿真和比较说明了该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed building temperature control with power constraints
Generally, heating, cooling and air conditioning (HVAC) systems are designed to handle worst case loads, and this over-design of HVAC equipment is one of the main reasons for building energy inefficiency. When the HVAC system is not over-designed, there exists a trade-off between the comfort of the building's occupants and the available heating/cooling power at critical load hours. We propose a distributed approach that maximizes the comfort of the building's occupants under several power constraints. We prove by means of graph theoretical tools and passivity analysis, that the proposed controller asymptotically reaches an optimal equilibrium without the need of full information. Finally, some simulations and comparisons are presented to illustrate the performance of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信