{"title":"畸变不变手写体数字识别的自适应共振理论(ART)神经网络模型","authors":"E. Khan","doi":"10.1109/IECON.1990.149319","DOIUrl":null,"url":null,"abstract":"A distortion- and rotation-invariant handwritten digit recognition scheme using a modified version of the adaptive resonance theory neural network model proposed by S. Grossberg and G. Carpenter (1988) is reported. The scheme is robust. It can be extended to the recognition of other handwritten characters.<<ETX>>","PeriodicalId":253424,"journal":{"name":"[Proceedings] IECON '90: 16th Annual Conference of IEEE Industrial Electronics Society","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Distortion invariant handwritten digit recognition using adaptive resonance theory (ART) neural net model\",\"authors\":\"E. Khan\",\"doi\":\"10.1109/IECON.1990.149319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A distortion- and rotation-invariant handwritten digit recognition scheme using a modified version of the adaptive resonance theory neural network model proposed by S. Grossberg and G. Carpenter (1988) is reported. The scheme is robust. It can be extended to the recognition of other handwritten characters.<<ETX>>\",\"PeriodicalId\":253424,\"journal\":{\"name\":\"[Proceedings] IECON '90: 16th Annual Conference of IEEE Industrial Electronics Society\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] IECON '90: 16th Annual Conference of IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.1990.149319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] IECON '90: 16th Annual Conference of IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.1990.149319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distortion invariant handwritten digit recognition using adaptive resonance theory (ART) neural net model
A distortion- and rotation-invariant handwritten digit recognition scheme using a modified version of the adaptive resonance theory neural network model proposed by S. Grossberg and G. Carpenter (1988) is reported. The scheme is robust. It can be extended to the recognition of other handwritten characters.<>