视觉运动估计与预测:时间相干性的概率网络模型

A. Yuille, Pierre-Yves Burgi, N. Grzywacz
{"title":"视觉运动估计与预测:时间相干性的概率网络模型","authors":"A. Yuille, Pierre-Yves Burgi, N. Grzywacz","doi":"10.1109/ICCV.1998.710834","DOIUrl":null,"url":null,"abstract":"We develop a theory for the temporal integration of visual motion motivated by psychophysical experiments. The theory proposes that input data are temporally grouped and used to predict and estimate motion flows in the image sequences. Our theory is expressed in terms of the Bayesian generalization of standard Kalman filtering which allows us to solve temporal grouping in conjunction with prediction and estimation. As demonstrated for tracking isolated contours the Bayesian formulation is superior to approaches which use data association as a first stage followed by conventional Kalman filtering. Our computer simulations demonstrate that our theory qualitatively accounts for several psychophysical experiments on motion occlusion and motion outliers.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Visual motion estimation and prediction: a probabilistic network model for temporal coherence\",\"authors\":\"A. Yuille, Pierre-Yves Burgi, N. Grzywacz\",\"doi\":\"10.1109/ICCV.1998.710834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a theory for the temporal integration of visual motion motivated by psychophysical experiments. The theory proposes that input data are temporally grouped and used to predict and estimate motion flows in the image sequences. Our theory is expressed in terms of the Bayesian generalization of standard Kalman filtering which allows us to solve temporal grouping in conjunction with prediction and estimation. As demonstrated for tracking isolated contours the Bayesian formulation is superior to approaches which use data association as a first stage followed by conventional Kalman filtering. Our computer simulations demonstrate that our theory qualitatively accounts for several psychophysical experiments on motion occlusion and motion outliers.\",\"PeriodicalId\":270671,\"journal\":{\"name\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.1998.710834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在心理物理实验的基础上,提出了视觉运动的时间整合理论。该理论提出将输入数据暂时分组,并用于预测和估计图像序列中的运动流。我们的理论是用标准卡尔曼滤波的贝叶斯泛化来表达的,它允许我们解决与预测和估计相结合的时间分组。正如所示,对于跟踪孤立轮廓,贝叶斯公式优于使用数据关联作为第一阶段,然后是传统卡尔曼滤波的方法。我们的计算机模拟表明,我们的理论定性地解释了几个关于运动遮挡和运动异常值的心理物理实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual motion estimation and prediction: a probabilistic network model for temporal coherence
We develop a theory for the temporal integration of visual motion motivated by psychophysical experiments. The theory proposes that input data are temporally grouped and used to predict and estimate motion flows in the image sequences. Our theory is expressed in terms of the Bayesian generalization of standard Kalman filtering which allows us to solve temporal grouping in conjunction with prediction and estimation. As demonstrated for tracking isolated contours the Bayesian formulation is superior to approaches which use data association as a first stage followed by conventional Kalman filtering. Our computer simulations demonstrate that our theory qualitatively accounts for several psychophysical experiments on motion occlusion and motion outliers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信