在有缺陷的增广立方体中嵌入环

Hong-Chun Hsu, Liang-Chih Chiang, Jimmy J. M. Tan, Lih-Hsing Hsu
{"title":"在有缺陷的增广立方体中嵌入环","authors":"Hong-Chun Hsu, Liang-Chih Chiang, Jimmy J. M. Tan, Lih-Hsing Hsu","doi":"10.1109/ISPAN.2004.1300474","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the fault hamiltonicity and the fault Hamiltonian connectivity of the augmented cubes AQ/sub n/. Assume that F /spl sube/ V(AQ/sub n/) /spl cup/ E(AQ/sub n/) and n /spl ges/ 4. We prove that AQ/sub n/ - F is Hamiltonian if |F| /spl les/ 2n-3 and that AQ/sub n/ - F is Hamiltonian connected if |F| /spl les/ 2n - 4. Moreover, these bounds are tight.","PeriodicalId":198404,"journal":{"name":"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ring embedding in faulty augmented cubes\",\"authors\":\"Hong-Chun Hsu, Liang-Chih Chiang, Jimmy J. M. Tan, Lih-Hsing Hsu\",\"doi\":\"10.1109/ISPAN.2004.1300474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the fault hamiltonicity and the fault Hamiltonian connectivity of the augmented cubes AQ/sub n/. Assume that F /spl sube/ V(AQ/sub n/) /spl cup/ E(AQ/sub n/) and n /spl ges/ 4. We prove that AQ/sub n/ - F is Hamiltonian if |F| /spl les/ 2n-3 and that AQ/sub n/ - F is Hamiltonian connected if |F| /spl les/ 2n - 4. Moreover, these bounds are tight.\",\"PeriodicalId\":198404,\"journal\":{\"name\":\"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPAN.2004.1300474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPAN.2004.1300474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文考虑增广立方体AQ/ subn /的故障哈密顿性和故障哈密顿连通性。假设F /spl sub / V(AQ/sub n/) /spl cup/ E(AQ/sub n/)和n/ spl ges/ 4。证明了AQ/下标n/ - F在|F| /spl les/ 2n-3时是哈密顿函数,证明了AQ/下标n/ - F在|F| /spl les/ 2n- 4时是哈密顿连通函数。此外,这些界限是严格的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ring embedding in faulty augmented cubes
In this paper, we consider the fault hamiltonicity and the fault Hamiltonian connectivity of the augmented cubes AQ/sub n/. Assume that F /spl sube/ V(AQ/sub n/) /spl cup/ E(AQ/sub n/) and n /spl ges/ 4. We prove that AQ/sub n/ - F is Hamiltonian if |F| /spl les/ 2n-3 and that AQ/sub n/ - F is Hamiltonian connected if |F| /spl les/ 2n - 4. Moreover, these bounds are tight.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信