Chen-Chieh Liao, Jong-Hwan Kim, H. Koike, D. Hwang
{"title":"使用变分自编码器的内容保留运动样式化","authors":"Chen-Chieh Liao, Jong-Hwan Kim, H. Koike, D. Hwang","doi":"10.1145/3588028.3603679","DOIUrl":null,"url":null,"abstract":"This work proposes a motion style transfer network that transfers motion style between different motion categories using variational autoencoders. The proposed network effectively transfers style among various motion categories and can create stylized motion unseen in the dataset. The network contains a content-conditioned module to preserve the characteristic of the content motion, which is important for real applications. We implement the network with variational autoencoders, which enable us to control the intensity of the style and mix different styles to enrich the motion diversity.","PeriodicalId":113397,"journal":{"name":"ACM SIGGRAPH 2023 Posters","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Content-Preserving Motion Stylization using Variational Autoencoder\",\"authors\":\"Chen-Chieh Liao, Jong-Hwan Kim, H. Koike, D. Hwang\",\"doi\":\"10.1145/3588028.3603679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a motion style transfer network that transfers motion style between different motion categories using variational autoencoders. The proposed network effectively transfers style among various motion categories and can create stylized motion unseen in the dataset. The network contains a content-conditioned module to preserve the characteristic of the content motion, which is important for real applications. We implement the network with variational autoencoders, which enable us to control the intensity of the style and mix different styles to enrich the motion diversity.\",\"PeriodicalId\":113397,\"journal\":{\"name\":\"ACM SIGGRAPH 2023 Posters\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2023 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3588028.3603679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2023 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3588028.3603679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Content-Preserving Motion Stylization using Variational Autoencoder
This work proposes a motion style transfer network that transfers motion style between different motion categories using variational autoencoders. The proposed network effectively transfers style among various motion categories and can create stylized motion unseen in the dataset. The network contains a content-conditioned module to preserve the characteristic of the content motion, which is important for real applications. We implement the network with variational autoencoders, which enable us to control the intensity of the style and mix different styles to enrich the motion diversity.