{"title":"拓扑超导体表面态的相图和边缘态","authors":"Weihao Zhao","doi":"10.4236/wjcmp.2021.113005","DOIUrl":null,"url":null,"abstract":"Majorana fermions in two-dimensional systems satisfy non-Abelian statistics. They are possible to exist in topological superconductors as quasi particles, which is of great significance for topological quantum computing. In this paper, we study a new promising system of superconducting topological surface state topological insulator thin films. We also study the phase diagrams of the model by plotting the Majorana edge states and the density of states in different regions of the phase diagram. Due to the mirror symmetry of the topological surface states, the Hamiltonian can be block diagonalized into two spin-triplet p-wave superconductors, which are also confirmed by the phase diagrams. The chiral Majorana edge modes may provide a new route for realizing topological quantum computation.","PeriodicalId":308307,"journal":{"name":"World Journal of Condensed Matter Physics","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase Diagram and Edge States of Surface States of Topological Superconductors\",\"authors\":\"Weihao Zhao\",\"doi\":\"10.4236/wjcmp.2021.113005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Majorana fermions in two-dimensional systems satisfy non-Abelian statistics. They are possible to exist in topological superconductors as quasi particles, which is of great significance for topological quantum computing. In this paper, we study a new promising system of superconducting topological surface state topological insulator thin films. We also study the phase diagrams of the model by plotting the Majorana edge states and the density of states in different regions of the phase diagram. Due to the mirror symmetry of the topological surface states, the Hamiltonian can be block diagonalized into two spin-triplet p-wave superconductors, which are also confirmed by the phase diagrams. The chiral Majorana edge modes may provide a new route for realizing topological quantum computation.\",\"PeriodicalId\":308307,\"journal\":{\"name\":\"World Journal of Condensed Matter Physics\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Condensed Matter Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/wjcmp.2021.113005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Condensed Matter Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/wjcmp.2021.113005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Phase Diagram and Edge States of Surface States of Topological Superconductors
Majorana fermions in two-dimensional systems satisfy non-Abelian statistics. They are possible to exist in topological superconductors as quasi particles, which is of great significance for topological quantum computing. In this paper, we study a new promising system of superconducting topological surface state topological insulator thin films. We also study the phase diagrams of the model by plotting the Majorana edge states and the density of states in different regions of the phase diagram. Due to the mirror symmetry of the topological surface states, the Hamiltonian can be block diagonalized into two spin-triplet p-wave superconductors, which are also confirmed by the phase diagrams. The chiral Majorana edge modes may provide a new route for realizing topological quantum computation.