自动分析和评估SEC文件

Ying Zheng, H. Zhou, Zhijiang Chen, Nnanna Ekedebe
{"title":"自动分析和评估SEC文件","authors":"Ying Zheng, H. Zhou, Zhijiang Chen, Nnanna Ekedebe","doi":"10.1109/ICIS.2014.6912118","DOIUrl":null,"url":null,"abstract":"This paper presents an intelligent corporate governance analysis and rating system, called AAE System, capable of retrieving SEC required documents of public companies and performing analysis and rating in terms of recommended corporate governance practices. With Machine Learning, local knowledge bases, databases, and semantic networks, the AAE system is able to automatically evaluate the strengths, deficiencies, and risks of a company's corporate governance practices and board of directors based on the documents stored in the SEC EDGAR database[1]. The produced score reduces a complex corporate governance process and related policies into a single number which enables concerned government agencies, investors and legislators to assess the governance characteristics of individual companies.","PeriodicalId":237256,"journal":{"name":"2014 IEEE/ACIS 13th International Conference on Computer and Information Science (ICIS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated analysis and evaluation of SEC documents\",\"authors\":\"Ying Zheng, H. Zhou, Zhijiang Chen, Nnanna Ekedebe\",\"doi\":\"10.1109/ICIS.2014.6912118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an intelligent corporate governance analysis and rating system, called AAE System, capable of retrieving SEC required documents of public companies and performing analysis and rating in terms of recommended corporate governance practices. With Machine Learning, local knowledge bases, databases, and semantic networks, the AAE system is able to automatically evaluate the strengths, deficiencies, and risks of a company's corporate governance practices and board of directors based on the documents stored in the SEC EDGAR database[1]. The produced score reduces a complex corporate governance process and related policies into a single number which enables concerned government agencies, investors and legislators to assess the governance characteristics of individual companies.\",\"PeriodicalId\":237256,\"journal\":{\"name\":\"2014 IEEE/ACIS 13th International Conference on Computer and Information Science (ICIS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACIS 13th International Conference on Computer and Information Science (ICIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIS.2014.6912118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACIS 13th International Conference on Computer and Information Science (ICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2014.6912118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种名为AAE系统的智能公司治理分析与评级系统,该系统能够检索SEC要求的上市公司文件,并根据推荐的公司治理实践进行分析和评级。通过机器学习、本地知识库、数据库和语义网络,AAE系统能够根据SEC EDGAR数据库中存储的文件,自动评估公司公司治理实践和董事会的优势、不足和风险[1]。该评分将复杂的公司治理过程和相关政策简化为一个数字,使有关的政府机构、投资者和立法者能够评估个别公司的治理特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated analysis and evaluation of SEC documents
This paper presents an intelligent corporate governance analysis and rating system, called AAE System, capable of retrieving SEC required documents of public companies and performing analysis and rating in terms of recommended corporate governance practices. With Machine Learning, local knowledge bases, databases, and semantic networks, the AAE system is able to automatically evaluate the strengths, deficiencies, and risks of a company's corporate governance practices and board of directors based on the documents stored in the SEC EDGAR database[1]. The produced score reduces a complex corporate governance process and related policies into a single number which enables concerned government agencies, investors and legislators to assess the governance characteristics of individual companies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信