{"title":"基于回归样条的局部最小值法在图像高斯噪声降噪中的研究","authors":"V. S. Bhadouria, D. Ghoshal","doi":"10.1109/MVIP.2012.6428760","DOIUrl":null,"url":null,"abstract":"The study proposes a novel image denoising algorithm based on the regression splines (RS) for the restoration of images corrupted with the Gaussian noise. In the proposed algorithm, overlapping window of dimension 5×5 have been considered to replace the central pixel value with the local minimum of both diagonal pixels and central row and column pixels of the processing window. Selection of minimum of approximate pixel value helps in reducing the noise diffusion to the neighboring pixels. The proposed algorithm has been found to function efficiently for the Gaussian noise removal while preserving the fine image details.","PeriodicalId":170271,"journal":{"name":"2012 International Conference on Machine Vision and Image Processing (MVIP)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on regression spline based local minima approach for gaussian noise reduction in images\",\"authors\":\"V. S. Bhadouria, D. Ghoshal\",\"doi\":\"10.1109/MVIP.2012.6428760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study proposes a novel image denoising algorithm based on the regression splines (RS) for the restoration of images corrupted with the Gaussian noise. In the proposed algorithm, overlapping window of dimension 5×5 have been considered to replace the central pixel value with the local minimum of both diagonal pixels and central row and column pixels of the processing window. Selection of minimum of approximate pixel value helps in reducing the noise diffusion to the neighboring pixels. The proposed algorithm has been found to function efficiently for the Gaussian noise removal while preserving the fine image details.\",\"PeriodicalId\":170271,\"journal\":{\"name\":\"2012 International Conference on Machine Vision and Image Processing (MVIP)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Machine Vision and Image Processing (MVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MVIP.2012.6428760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVIP.2012.6428760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A study on regression spline based local minima approach for gaussian noise reduction in images
The study proposes a novel image denoising algorithm based on the regression splines (RS) for the restoration of images corrupted with the Gaussian noise. In the proposed algorithm, overlapping window of dimension 5×5 have been considered to replace the central pixel value with the local minimum of both diagonal pixels and central row and column pixels of the processing window. Selection of minimum of approximate pixel value helps in reducing the noise diffusion to the neighboring pixels. The proposed algorithm has been found to function efficiently for the Gaussian noise removal while preserving the fine image details.