Xia Zhang, Jinyu Zhan, Wei Jiang, Yuexi Ma, Ke Jiang
{"title":"能源和安全关键分布式实时嵌入式系统的设计优化","authors":"Xia Zhang, Jinyu Zhan, Wei Jiang, Yuexi Ma, Ke Jiang","doi":"10.1109/IPDPSW.2013.24","DOIUrl":null,"url":null,"abstract":"In this paper, we approach the design of energy-and security-critical distributed real-time embedded systems from the early mapping and scheduling phases. Modern Distributed Embedded Systems (DESs) are common to be connected to external networks, which is beneficial for various purposes, but also opens up the gate for potential security attacks. However, security protections in DESs result in significant time and energy overhead. In this work, we focus on the problem of providing the best confidentiality protection of internal communication in DESs under time and energy constraints. The complexity of finding the optimal solution grows exponentially as problem size grows. Therefore, we propose an efficient genetic algorithm based heuristic for solving the problem. Extensive experiments demonstrate the efficiency of the proposed technique.","PeriodicalId":234552,"journal":{"name":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Design Optimization of Energy- and Security-Critical Distributed Real-Time Embedded Systems\",\"authors\":\"Xia Zhang, Jinyu Zhan, Wei Jiang, Yuexi Ma, Ke Jiang\",\"doi\":\"10.1109/IPDPSW.2013.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we approach the design of energy-and security-critical distributed real-time embedded systems from the early mapping and scheduling phases. Modern Distributed Embedded Systems (DESs) are common to be connected to external networks, which is beneficial for various purposes, but also opens up the gate for potential security attacks. However, security protections in DESs result in significant time and energy overhead. In this work, we focus on the problem of providing the best confidentiality protection of internal communication in DESs under time and energy constraints. The complexity of finding the optimal solution grows exponentially as problem size grows. Therefore, we propose an efficient genetic algorithm based heuristic for solving the problem. Extensive experiments demonstrate the efficiency of the proposed technique.\",\"PeriodicalId\":234552,\"journal\":{\"name\":\"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2013.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2013.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design Optimization of Energy- and Security-Critical Distributed Real-Time Embedded Systems
In this paper, we approach the design of energy-and security-critical distributed real-time embedded systems from the early mapping and scheduling phases. Modern Distributed Embedded Systems (DESs) are common to be connected to external networks, which is beneficial for various purposes, but also opens up the gate for potential security attacks. However, security protections in DESs result in significant time and energy overhead. In this work, we focus on the problem of providing the best confidentiality protection of internal communication in DESs under time and energy constraints. The complexity of finding the optimal solution grows exponentially as problem size grows. Therefore, we propose an efficient genetic algorithm based heuristic for solving the problem. Extensive experiments demonstrate the efficiency of the proposed technique.