购物篮分析的购买行为研究:Kohonen图的预聚类

Pierre Desmet
{"title":"购物篮分析的购买行为研究:Kohonen图的预聚类","authors":"Pierre Desmet","doi":"10.1051/EJESS:2001113","DOIUrl":null,"url":null,"abstract":"From the products bought, by basket analysis we seek to infer interest, values and choice criteria and predict purchase probabilities for other products. This statistical approach relies on the existence of a few general under-lying clusters which enables the prediction of general and specific buying behavior. Compared to traditional clustering methods, a Kohonen map, a neural network, allows the projection and clustering of data for which the proximity presents a meaning or interest. Beyond the interest of these neural networks for graphic representation, this article suggests different ways of articulating general and product-specific typologies which are illustrated on a real database of buyers' behavior in a book club. The results clearly show a significant improvement with regards to the results obtained with current models using either RFM segmentation or logistic regression.","PeriodicalId":352454,"journal":{"name":"European Journal of Economic and Social Systems","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Buying behavior study with basket analysis: pre-clustering with a Kohonen map\",\"authors\":\"Pierre Desmet\",\"doi\":\"10.1051/EJESS:2001113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From the products bought, by basket analysis we seek to infer interest, values and choice criteria and predict purchase probabilities for other products. This statistical approach relies on the existence of a few general under-lying clusters which enables the prediction of general and specific buying behavior. Compared to traditional clustering methods, a Kohonen map, a neural network, allows the projection and clustering of data for which the proximity presents a meaning or interest. Beyond the interest of these neural networks for graphic representation, this article suggests different ways of articulating general and product-specific typologies which are illustrated on a real database of buyers' behavior in a book club. The results clearly show a significant improvement with regards to the results obtained with current models using either RFM segmentation or logistic regression.\",\"PeriodicalId\":352454,\"journal\":{\"name\":\"European Journal of Economic and Social Systems\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Economic and Social Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/EJESS:2001113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Economic and Social Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/EJESS:2001113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

从购买的产品中,通过篮子分析,我们试图推断兴趣,价值和选择标准,并预测其他产品的购买概率。这种统计方法依赖于一些一般的潜在集群的存在,这些集群能够预测一般和特定的购买行为。与传统的聚类方法相比,Kohonen地图,一种神经网络,允许对接近度表示意义或兴趣的数据进行投影和聚类。除了这些神经网络对图形表示的兴趣之外,本文还提出了阐明一般类型和特定产品类型的不同方法,并在一个图书俱乐部买家行为的真实数据库中进行了说明。结果清楚地表明,与使用RFM分割或逻辑回归的当前模型获得的结果相比,有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Buying behavior study with basket analysis: pre-clustering with a Kohonen map
From the products bought, by basket analysis we seek to infer interest, values and choice criteria and predict purchase probabilities for other products. This statistical approach relies on the existence of a few general under-lying clusters which enables the prediction of general and specific buying behavior. Compared to traditional clustering methods, a Kohonen map, a neural network, allows the projection and clustering of data for which the proximity presents a meaning or interest. Beyond the interest of these neural networks for graphic representation, this article suggests different ways of articulating general and product-specific typologies which are illustrated on a real database of buyers' behavior in a book club. The results clearly show a significant improvement with regards to the results obtained with current models using either RFM segmentation or logistic regression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信