多工位装配过程中变型诊断的传感器优化分布

Yu Ding, Pansoo Kim, D. Ceglarek, Jionghua Jin
{"title":"多工位装配过程中变型诊断的传感器优化分布","authors":"Yu Ding, Pansoo Kim, D. Ceglarek, Jionghua Jin","doi":"10.1109/TRA.2003.814516","DOIUrl":null,"url":null,"abstract":"This paper presents a methodology for optimal allocation of sensors in a multistation assembly process for the purpose of diagnosing in a timely manner variation sources that are responsible for product quality defects. A sensor system distributed in such a way can help manufacturers improve product quality while, at the same time, reducing process downtime. Traditional approaches in sensor optimization fall into two categories: multistation sensor allocation for the purpose of product inspection (rather than diagnosis); and allocation of sensors for the purpose of variation diagnosis but at a single measurement station. In our approach, sensing information from different measurement stations is integrated into a state-space model and the effectiveness of a distributed sensor system is quantified by a diagnosability index. This index is further studied in terms of variation transmissibility between stations as well as variation detectability at individual stations. Based on an understanding of the mechanism of variation propagation, we develop a backward-propagation strategy to determine the locations of measurement stations and the minimum number of sensors needed to achieve full diagnosability. An assembly example illustrates the methodology.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":"{\"title\":\"Optimal sensor distribution for variation diagnosis in multistation assembly processes\",\"authors\":\"Yu Ding, Pansoo Kim, D. Ceglarek, Jionghua Jin\",\"doi\":\"10.1109/TRA.2003.814516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a methodology for optimal allocation of sensors in a multistation assembly process for the purpose of diagnosing in a timely manner variation sources that are responsible for product quality defects. A sensor system distributed in such a way can help manufacturers improve product quality while, at the same time, reducing process downtime. Traditional approaches in sensor optimization fall into two categories: multistation sensor allocation for the purpose of product inspection (rather than diagnosis); and allocation of sensors for the purpose of variation diagnosis but at a single measurement station. In our approach, sensing information from different measurement stations is integrated into a state-space model and the effectiveness of a distributed sensor system is quantified by a diagnosability index. This index is further studied in terms of variation transmissibility between stations as well as variation detectability at individual stations. Based on an understanding of the mechanism of variation propagation, we develop a backward-propagation strategy to determine the locations of measurement stations and the minimum number of sensors needed to achieve full diagnosability. An assembly example illustrates the methodology.\",\"PeriodicalId\":161449,\"journal\":{\"name\":\"IEEE Trans. Robotics Autom.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"109\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Robotics Autom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRA.2003.814516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRA.2003.814516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 109

摘要

本文提出了一种多工位装配过程中传感器的优化配置方法,以便及时诊断导致产品质量缺陷的变异源。以这种方式分布的传感器系统可以帮助制造商提高产品质量,同时减少过程停机时间。传统的传感器优化方法分为两类:以产品检测(而非诊断)为目的的多站传感器配置;并在单个测量站配置用于变异诊断的传感器。在我们的方法中,来自不同测量站的传感信息被集成到一个状态空间模型中,分布式传感器系统的有效性通过可诊断性指标来量化。进一步从站间变异传播率和单站变异可探测性两个方面对该指标进行了研究。基于对变异传播机制的理解,我们开发了一种反向传播策略,以确定测量站的位置和实现完全诊断所需的最小传感器数量。一个程序集示例说明了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal sensor distribution for variation diagnosis in multistation assembly processes
This paper presents a methodology for optimal allocation of sensors in a multistation assembly process for the purpose of diagnosing in a timely manner variation sources that are responsible for product quality defects. A sensor system distributed in such a way can help manufacturers improve product quality while, at the same time, reducing process downtime. Traditional approaches in sensor optimization fall into two categories: multistation sensor allocation for the purpose of product inspection (rather than diagnosis); and allocation of sensors for the purpose of variation diagnosis but at a single measurement station. In our approach, sensing information from different measurement stations is integrated into a state-space model and the effectiveness of a distributed sensor system is quantified by a diagnosability index. This index is further studied in terms of variation transmissibility between stations as well as variation detectability at individual stations. Based on an understanding of the mechanism of variation propagation, we develop a backward-propagation strategy to determine the locations of measurement stations and the minimum number of sensors needed to achieve full diagnosability. An assembly example illustrates the methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信