记忆效应的稀疏识别和非线性动力学用于射频功率放大器简约行为模型的建立

Sanjika Devi, D. Kurup
{"title":"记忆效应的稀疏识别和非线性动力学用于射频功率放大器简约行为模型的建立","authors":"Sanjika Devi, D. Kurup","doi":"10.1109/IMARC.2017.8449670","DOIUrl":null,"url":null,"abstract":"This article, deals with the sparse identification of memory effects and nonlinear dynamics for accurate and efficient behavioral modeling of RF Power Amplifiers (PAs). Here, we use sparse regression using a sequential thresholded leastsquares algorithm to determine the fewest relevant terms from a large set of available terms required to accurately represent the dynamics of RF PAs. The proposed approach develops a framework for behavioral modeling of RF PAs, taking into advantage, the advances in sparsity techniques which balances the model accuracy with complexity. We show that, for similar modeling performance, the proposed method requires fewer coefficients than the standard memory polynomial model and simplified Volterra based models.","PeriodicalId":259227,"journal":{"name":"2017 IEEE MTT-S International Microwave and RF Conference (IMaRC)","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sparse Identification of Memory Effects and Nonlinear Dynamics for Developing Parsimonious Behavioral Models of RF Power Amplifiers\",\"authors\":\"Sanjika Devi, D. Kurup\",\"doi\":\"10.1109/IMARC.2017.8449670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article, deals with the sparse identification of memory effects and nonlinear dynamics for accurate and efficient behavioral modeling of RF Power Amplifiers (PAs). Here, we use sparse regression using a sequential thresholded leastsquares algorithm to determine the fewest relevant terms from a large set of available terms required to accurately represent the dynamics of RF PAs. The proposed approach develops a framework for behavioral modeling of RF PAs, taking into advantage, the advances in sparsity techniques which balances the model accuracy with complexity. We show that, for similar modeling performance, the proposed method requires fewer coefficients than the standard memory polynomial model and simplified Volterra based models.\",\"PeriodicalId\":259227,\"journal\":{\"name\":\"2017 IEEE MTT-S International Microwave and RF Conference (IMaRC)\",\"volume\":\"233 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE MTT-S International Microwave and RF Conference (IMaRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMARC.2017.8449670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE MTT-S International Microwave and RF Conference (IMaRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMARC.2017.8449670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了记忆效应的稀疏识别和非线性动力学,以便准确有效地建立射频功率放大器(pa)的行为模型。在这里,我们使用稀疏回归,使用顺序阈值最小二乘算法,从准确表示RF PAs动态所需的大量可用术语中确定最少相关术语。提出的方法开发了一个RF PAs行为建模框架,利用稀疏性技术的进步来平衡模型精度和复杂性。我们表明,在相似的建模性能下,所提出的方法比标准内存多项式模型和简化的基于Volterra的模型需要更少的系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Identification of Memory Effects and Nonlinear Dynamics for Developing Parsimonious Behavioral Models of RF Power Amplifiers
This article, deals with the sparse identification of memory effects and nonlinear dynamics for accurate and efficient behavioral modeling of RF Power Amplifiers (PAs). Here, we use sparse regression using a sequential thresholded leastsquares algorithm to determine the fewest relevant terms from a large set of available terms required to accurately represent the dynamics of RF PAs. The proposed approach develops a framework for behavioral modeling of RF PAs, taking into advantage, the advances in sparsity techniques which balances the model accuracy with complexity. We show that, for similar modeling performance, the proposed method requires fewer coefficients than the standard memory polynomial model and simplified Volterra based models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信