基于移动平台内部驾驶态势感知的困倦分类

J. Nine, Naeem Ahmed, R. Mathavan
{"title":"基于移动平台内部驾驶态势感知的困倦分类","authors":"J. Nine, Naeem Ahmed, R. Mathavan","doi":"10.14464/ess.v8i2.491","DOIUrl":null,"url":null,"abstract":"the sleeping driver is potentially more likely to cause an accident than the person who speeds up since the driver is the victim of sleepiness. Automobile industry researchers, including manufacturers, seek to solve this issue with various technical solutions that can avoid such a situation. This paper proposes an implementation of a lightweight method to detect driver's sleepiness using facial landmarks and head pose estimation based on neural network methodologies on a mobile device. We try to improve the accurateness by using face images that the camera detects and passes to CNN to identify sleepiness. Firstly, applied a behavioral landmark's sleepiness detection process. Then, an integrated Head Pose Estimation technique will strengthen the system's reliability. The preliminary findings of the tests demonstrate that with real-time capability, more than 86% identification accuracy can be reached in several real-world scenarios for all classes, including with glasses, without glasses, and light-dark background. This work aims to classify drowsiness, warn, and inform drivers, helping them to stop falling asleep at the wheel. The integrated CNN-based method is used to create a high accuracy and simple-to-use real-time driver drowsiness monitoring framework for embedded devices and Android phones","PeriodicalId":322203,"journal":{"name":"Embedded Selforganising Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drowsiness Classification for Internal Driving Situation Awareness on Mobile Platform\",\"authors\":\"J. Nine, Naeem Ahmed, R. Mathavan\",\"doi\":\"10.14464/ess.v8i2.491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"the sleeping driver is potentially more likely to cause an accident than the person who speeds up since the driver is the victim of sleepiness. Automobile industry researchers, including manufacturers, seek to solve this issue with various technical solutions that can avoid such a situation. This paper proposes an implementation of a lightweight method to detect driver's sleepiness using facial landmarks and head pose estimation based on neural network methodologies on a mobile device. We try to improve the accurateness by using face images that the camera detects and passes to CNN to identify sleepiness. Firstly, applied a behavioral landmark's sleepiness detection process. Then, an integrated Head Pose Estimation technique will strengthen the system's reliability. The preliminary findings of the tests demonstrate that with real-time capability, more than 86% identification accuracy can be reached in several real-world scenarios for all classes, including with glasses, without glasses, and light-dark background. This work aims to classify drowsiness, warn, and inform drivers, helping them to stop falling asleep at the wheel. The integrated CNN-based method is used to create a high accuracy and simple-to-use real-time driver drowsiness monitoring framework for embedded devices and Android phones\",\"PeriodicalId\":322203,\"journal\":{\"name\":\"Embedded Selforganising Systems\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Embedded Selforganising Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14464/ess.v8i2.491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Selforganising Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14464/ess.v8i2.491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

睡觉的司机比超速的人更容易造成事故,因为司机是睡眠的受害者。汽车行业的研究人员,包括制造商,试图用各种技术解决方案来解决这个问题,以避免这种情况的发生。本文提出了一种基于神经网络方法在移动设备上使用面部标志和头部姿势估计来检测驾驶员睡意的轻量级方法。我们试图通过使用相机检测到的人脸图像并将其传递给CNN来识别睡意来提高准确性。首先,应用行为地标的睡意检测过程。然后,采用综合的头部姿态估计技术来增强系统的可靠性。测试的初步结果表明,通过实时功能,在各种类别的实际场景中(包括戴眼镜、不戴眼镜和明暗背景),识别准确率可以达到86%以上。这项工作的目的是对困倦进行分类,警告和通知司机,帮助他们不要在开车时睡着。采用基于cnn的集成方法,为嵌入式设备和Android手机创建了高精度、简单易用的驾驶员困倦实时监测框架
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Drowsiness Classification for Internal Driving Situation Awareness on Mobile Platform
the sleeping driver is potentially more likely to cause an accident than the person who speeds up since the driver is the victim of sleepiness. Automobile industry researchers, including manufacturers, seek to solve this issue with various technical solutions that can avoid such a situation. This paper proposes an implementation of a lightweight method to detect driver's sleepiness using facial landmarks and head pose estimation based on neural network methodologies on a mobile device. We try to improve the accurateness by using face images that the camera detects and passes to CNN to identify sleepiness. Firstly, applied a behavioral landmark's sleepiness detection process. Then, an integrated Head Pose Estimation technique will strengthen the system's reliability. The preliminary findings of the tests demonstrate that with real-time capability, more than 86% identification accuracy can be reached in several real-world scenarios for all classes, including with glasses, without glasses, and light-dark background. This work aims to classify drowsiness, warn, and inform drivers, helping them to stop falling asleep at the wheel. The integrated CNN-based method is used to create a high accuracy and simple-to-use real-time driver drowsiness monitoring framework for embedded devices and Android phones
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信