架构认知分而治之算法

K. Gatlin, L. Carter
{"title":"架构认知分而治之算法","authors":"K. Gatlin, L. Carter","doi":"10.1145/331532.331557","DOIUrl":null,"url":null,"abstract":"Divide and conquer programs can achieve good performance on parallel computers and computers with deep memory hierarchies. We introduce architecture-cognizant divide and conquer algorithms, and explore how they can achieve even better performance. An architecture-cognizant algorithm has functionally-equivalent variants of the divide and/or combine functions, and a variant policy that specifies which variant to use at each level of recursion. An optimal variant policy is chosen for each target computer via experimentation. With h levels of recursion, an exhaustive search requires \\theta(vh) experiments (where v is the number of variants). We present a method based on dynamic programming that reduces this to \\theta(vc) (where c is typically a small constant) experiments for a class of architecture-cognizant programs. We verify our technique on two kernels (matrix multiply and 2-D Point Jacobi) using three architectures. Our technique improves performance by up to a factor of two, compared to architecture-oblivious divide and conquer implementations. Further our dynamic programming approach succeeds in selecting the optimal variant policy.","PeriodicalId":354898,"journal":{"name":"ACM/IEEE SC 1999 Conference (SC'99)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Architecture-Cognizant Divide and Conquer Algorithms\",\"authors\":\"K. Gatlin, L. Carter\",\"doi\":\"10.1145/331532.331557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Divide and conquer programs can achieve good performance on parallel computers and computers with deep memory hierarchies. We introduce architecture-cognizant divide and conquer algorithms, and explore how they can achieve even better performance. An architecture-cognizant algorithm has functionally-equivalent variants of the divide and/or combine functions, and a variant policy that specifies which variant to use at each level of recursion. An optimal variant policy is chosen for each target computer via experimentation. With h levels of recursion, an exhaustive search requires \\\\theta(vh) experiments (where v is the number of variants). We present a method based on dynamic programming that reduces this to \\\\theta(vc) (where c is typically a small constant) experiments for a class of architecture-cognizant programs. We verify our technique on two kernels (matrix multiply and 2-D Point Jacobi) using three architectures. Our technique improves performance by up to a factor of two, compared to architecture-oblivious divide and conquer implementations. Further our dynamic programming approach succeeds in selecting the optimal variant policy.\",\"PeriodicalId\":354898,\"journal\":{\"name\":\"ACM/IEEE SC 1999 Conference (SC'99)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE SC 1999 Conference (SC'99)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/331532.331557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 1999 Conference (SC'99)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/331532.331557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

分而治之的程序可以在并行计算机和具有深度内存层次结构的计算机上获得良好的性能。我们介绍了体系结构认知的分而治之算法,并探讨了它们如何实现更好的性能。体系结构识别算法具有划分和/或组合函数的功能等效变体,以及指定在每个递归级别使用哪个变体的变体策略。通过实验,为每台目标计算机选择了最优的变异策略。对于h级递归,穷举搜索需要\theta(vh)次实验(其中v是变体的数量)。我们提出了一种基于动态规划的方法,将其减少到\theta(vc)(其中c通常是一个小常数),用于一类架构认知程序的实验。我们使用三种架构在两个核(矩阵乘法和二维Jacobi点)上验证了我们的技术。与体系结构无关的分而治之实现相比,我们的技术将性能提高了两倍。此外,我们的动态规划方法成功地选择了最优的变策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Architecture-Cognizant Divide and Conquer Algorithms
Divide and conquer programs can achieve good performance on parallel computers and computers with deep memory hierarchies. We introduce architecture-cognizant divide and conquer algorithms, and explore how they can achieve even better performance. An architecture-cognizant algorithm has functionally-equivalent variants of the divide and/or combine functions, and a variant policy that specifies which variant to use at each level of recursion. An optimal variant policy is chosen for each target computer via experimentation. With h levels of recursion, an exhaustive search requires \theta(vh) experiments (where v is the number of variants). We present a method based on dynamic programming that reduces this to \theta(vc) (where c is typically a small constant) experiments for a class of architecture-cognizant programs. We verify our technique on two kernels (matrix multiply and 2-D Point Jacobi) using three architectures. Our technique improves performance by up to a factor of two, compared to architecture-oblivious divide and conquer implementations. Further our dynamic programming approach succeeds in selecting the optimal variant policy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信