从BOLD fMRI预测视觉感知

Ajay Halthor, K. Kumar
{"title":"从BOLD fMRI预测视觉感知","authors":"Ajay Halthor, K. Kumar","doi":"10.1109/CSCITA.2017.8066528","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to determine the object a person visually perceives by analyzing BOLD fMRI data. We use an fMRI dataset and analyze the effects of univariate and multivariate feature selection techniques. By performing dimensionality reduction with Principal Component Analysis (PCA), training with a Support Vector Classifier without a kernel and appropriate smoothing, we obtained a 93.16% accuracy: higher than the state of the art 92%.","PeriodicalId":299147,"journal":{"name":"2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of visual perception from BOLD fMRI\",\"authors\":\"Ajay Halthor, K. Kumar\",\"doi\":\"10.1109/CSCITA.2017.8066528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this paper is to determine the object a person visually perceives by analyzing BOLD fMRI data. We use an fMRI dataset and analyze the effects of univariate and multivariate feature selection techniques. By performing dimensionality reduction with Principal Component Analysis (PCA), training with a Support Vector Classifier without a kernel and appropriate smoothing, we obtained a 93.16% accuracy: higher than the state of the art 92%.\",\"PeriodicalId\":299147,\"journal\":{\"name\":\"2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCITA.2017.8066528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCITA.2017.8066528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目标是通过分析BOLD功能磁共振成像数据来确定一个人视觉感知的对象。我们使用fMRI数据集并分析单变量和多变量特征选择技术的效果。通过使用主成分分析(PCA)进行降维,使用无核支持向量分类器和适当的平滑进行训练,我们获得了93.16%的准确率:高于目前的92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of visual perception from BOLD fMRI
The goal of this paper is to determine the object a person visually perceives by analyzing BOLD fMRI data. We use an fMRI dataset and analyze the effects of univariate and multivariate feature selection techniques. By performing dimensionality reduction with Principal Component Analysis (PCA), training with a Support Vector Classifier without a kernel and appropriate smoothing, we obtained a 93.16% accuracy: higher than the state of the art 92%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信