无线传感器网络中的分布式k -均值聚类算法

Jin Zhou, Y. Zhang, Yuyan Jiang, C. L. P. Chen, Long Chen
{"title":"无线传感器网络中的分布式k -均值聚类算法","authors":"Jin Zhou, Y. Zhang, Yuyan Jiang, C. L. P. Chen, Long Chen","doi":"10.1109/ICCSS.2015.7281143","DOIUrl":null,"url":null,"abstract":"It is a hard work for the traditional k-means algorithm to perform data clustering in a large, dynamic distributed wireless sensor networks. In this paper, we propose a distributed k-means clustering algorithm, in which the distributed clustering is performed at each sensor with the collaboration of its neighboring sensors. To extract the important features and improve the clustering results, the attribute-weight-entropy regularization technique is used in the proposed clustering method. Experiments on synthetic datasets have shown the good performance of the proposed algorithms.","PeriodicalId":299619,"journal":{"name":"2015 International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A distributed K-means clustering algorithm in wireless sensor networks\",\"authors\":\"Jin Zhou, Y. Zhang, Yuyan Jiang, C. L. P. Chen, Long Chen\",\"doi\":\"10.1109/ICCSS.2015.7281143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is a hard work for the traditional k-means algorithm to perform data clustering in a large, dynamic distributed wireless sensor networks. In this paper, we propose a distributed k-means clustering algorithm, in which the distributed clustering is performed at each sensor with the collaboration of its neighboring sensors. To extract the important features and improve the clustering results, the attribute-weight-entropy regularization technique is used in the proposed clustering method. Experiments on synthetic datasets have shown the good performance of the proposed algorithms.\",\"PeriodicalId\":299619,\"journal\":{\"name\":\"2015 International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSS.2015.7281143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSS.2015.7281143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

传统的k-means算法很难在大型动态分布式无线传感器网络中进行数据聚类。本文提出了一种分布式k-means聚类算法,该算法在相邻传感器的协同下对每个传感器进行分布式聚类。为了提取重要特征,提高聚类效果,本文提出的聚类方法采用属性权熵正则化技术。在综合数据集上的实验证明了所提算法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A distributed K-means clustering algorithm in wireless sensor networks
It is a hard work for the traditional k-means algorithm to perform data clustering in a large, dynamic distributed wireless sensor networks. In this paper, we propose a distributed k-means clustering algorithm, in which the distributed clustering is performed at each sensor with the collaboration of its neighboring sensors. To extract the important features and improve the clustering results, the attribute-weight-entropy regularization technique is used in the proposed clustering method. Experiments on synthetic datasets have shown the good performance of the proposed algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信