基于精细特征选择的文本挖掘预测情感评论

Ching-Hsue Cheng
{"title":"基于精细特征选择的文本挖掘预测情感评论","authors":"Ching-Hsue Cheng","doi":"10.1145/3033288.3033307","DOIUrl":null,"url":null,"abstract":"This paper proposed an additional feature set and reduced the data dimension by SVD and PCA in order to increase accuracy and decrease executing time in text mining. The contribution of this study has: (i) proposed a preprocessing algorithm for sentiment classification, (ii) refined a feature set by adding adjective and adverb feature for sentiment classification, and (iii) utilized SVD then PCA to reduce data dimension for manager identified the sentimental labels. The experimental results show that the proposed model can obtain the better accuracy and the additional features make the better performance. Moreover, the dimension reduction can reduce the executing time effectively.","PeriodicalId":253625,"journal":{"name":"International Conference on Network, Communication and Computing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Text Mining Based on Refined Feature Selection to Predict Sentimental Review\",\"authors\":\"Ching-Hsue Cheng\",\"doi\":\"10.1145/3033288.3033307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed an additional feature set and reduced the data dimension by SVD and PCA in order to increase accuracy and decrease executing time in text mining. The contribution of this study has: (i) proposed a preprocessing algorithm for sentiment classification, (ii) refined a feature set by adding adjective and adverb feature for sentiment classification, and (iii) utilized SVD then PCA to reduce data dimension for manager identified the sentimental labels. The experimental results show that the proposed model can obtain the better accuracy and the additional features make the better performance. Moreover, the dimension reduction can reduce the executing time effectively.\",\"PeriodicalId\":253625,\"journal\":{\"name\":\"International Conference on Network, Communication and Computing\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Network, Communication and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3033288.3033307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Network, Communication and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3033288.3033307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了提高文本挖掘的准确性和减少执行时间,本文提出了一个附加的特征集,并通过奇异值分解和主成分分析对数据进行降维。本研究的贡献有:(1)提出了情感分类的预处理算法;(2)通过添加形容词和副词特征来细化情感分类的特征集;(3)利用奇异值分解再用主成分分析法对数据进行降维,供管理者识别情感标签。实验结果表明,该模型可以获得较好的精度,并且附加的特征使其具有较好的性能。此外,降维可以有效地减少执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Text Mining Based on Refined Feature Selection to Predict Sentimental Review
This paper proposed an additional feature set and reduced the data dimension by SVD and PCA in order to increase accuracy and decrease executing time in text mining. The contribution of this study has: (i) proposed a preprocessing algorithm for sentiment classification, (ii) refined a feature set by adding adjective and adverb feature for sentiment classification, and (iii) utilized SVD then PCA to reduce data dimension for manager identified the sentimental labels. The experimental results show that the proposed model can obtain the better accuracy and the additional features make the better performance. Moreover, the dimension reduction can reduce the executing time effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信