{"title":"用于视觉里程计的单目SLAM","authors":"R. Munguía, A. Grau","doi":"10.1109/WISP.2007.4447564","DOIUrl":null,"url":null,"abstract":"The ego-motion online estimation process from a video input is often called visual odometry. Typically optical flow and structure from motion (SFM) techniques have been used for visual odometry. Monocular simultaneous localization and mapping (SLAM) techniques implicitly estimate camera ego-motion while incrementally build a map of the environment. However in monocular SLAM, when the number of features in the system state increases, the computational cost grows rapidly; consequently maintaining frame rate operation becomes impractical. In this paper monocular SLAM is proposed for map-based visual odometry. The number of features is bounded removing features dynamically from the system state, for maintaining a stable processing time. In the other hand if features are removed then previous visited sites can not be recognized, nevertheless in an odometry context this could not be a problem. A method for feature initialization and a simple method for recovery metric scale are proposed. The experimental results using real image sequences show that the scheme presented in this paper is promising.","PeriodicalId":164902,"journal":{"name":"2007 IEEE International Symposium on Intelligent Signal Processing","volume":"254 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Monocular SLAM for Visual Odometry\",\"authors\":\"R. Munguía, A. Grau\",\"doi\":\"10.1109/WISP.2007.4447564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ego-motion online estimation process from a video input is often called visual odometry. Typically optical flow and structure from motion (SFM) techniques have been used for visual odometry. Monocular simultaneous localization and mapping (SLAM) techniques implicitly estimate camera ego-motion while incrementally build a map of the environment. However in monocular SLAM, when the number of features in the system state increases, the computational cost grows rapidly; consequently maintaining frame rate operation becomes impractical. In this paper monocular SLAM is proposed for map-based visual odometry. The number of features is bounded removing features dynamically from the system state, for maintaining a stable processing time. In the other hand if features are removed then previous visited sites can not be recognized, nevertheless in an odometry context this could not be a problem. A method for feature initialization and a simple method for recovery metric scale are proposed. The experimental results using real image sequences show that the scheme presented in this paper is promising.\",\"PeriodicalId\":164902,\"journal\":{\"name\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"volume\":\"254 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISP.2007.4447564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Intelligent Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISP.2007.4447564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The ego-motion online estimation process from a video input is often called visual odometry. Typically optical flow and structure from motion (SFM) techniques have been used for visual odometry. Monocular simultaneous localization and mapping (SLAM) techniques implicitly estimate camera ego-motion while incrementally build a map of the environment. However in monocular SLAM, when the number of features in the system state increases, the computational cost grows rapidly; consequently maintaining frame rate operation becomes impractical. In this paper monocular SLAM is proposed for map-based visual odometry. The number of features is bounded removing features dynamically from the system state, for maintaining a stable processing time. In the other hand if features are removed then previous visited sites can not be recognized, nevertheless in an odometry context this could not be a problem. A method for feature initialization and a simple method for recovery metric scale are proposed. The experimental results using real image sequences show that the scheme presented in this paper is promising.