用于视觉里程计的单目SLAM

R. Munguía, A. Grau
{"title":"用于视觉里程计的单目SLAM","authors":"R. Munguía, A. Grau","doi":"10.1109/WISP.2007.4447564","DOIUrl":null,"url":null,"abstract":"The ego-motion online estimation process from a video input is often called visual odometry. Typically optical flow and structure from motion (SFM) techniques have been used for visual odometry. Monocular simultaneous localization and mapping (SLAM) techniques implicitly estimate camera ego-motion while incrementally build a map of the environment. However in monocular SLAM, when the number of features in the system state increases, the computational cost grows rapidly; consequently maintaining frame rate operation becomes impractical. In this paper monocular SLAM is proposed for map-based visual odometry. The number of features is bounded removing features dynamically from the system state, for maintaining a stable processing time. In the other hand if features are removed then previous visited sites can not be recognized, nevertheless in an odometry context this could not be a problem. A method for feature initialization and a simple method for recovery metric scale are proposed. The experimental results using real image sequences show that the scheme presented in this paper is promising.","PeriodicalId":164902,"journal":{"name":"2007 IEEE International Symposium on Intelligent Signal Processing","volume":"254 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Monocular SLAM for Visual Odometry\",\"authors\":\"R. Munguía, A. Grau\",\"doi\":\"10.1109/WISP.2007.4447564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ego-motion online estimation process from a video input is often called visual odometry. Typically optical flow and structure from motion (SFM) techniques have been used for visual odometry. Monocular simultaneous localization and mapping (SLAM) techniques implicitly estimate camera ego-motion while incrementally build a map of the environment. However in monocular SLAM, when the number of features in the system state increases, the computational cost grows rapidly; consequently maintaining frame rate operation becomes impractical. In this paper monocular SLAM is proposed for map-based visual odometry. The number of features is bounded removing features dynamically from the system state, for maintaining a stable processing time. In the other hand if features are removed then previous visited sites can not be recognized, nevertheless in an odometry context this could not be a problem. A method for feature initialization and a simple method for recovery metric scale are proposed. The experimental results using real image sequences show that the scheme presented in this paper is promising.\",\"PeriodicalId\":164902,\"journal\":{\"name\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"volume\":\"254 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISP.2007.4447564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Intelligent Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISP.2007.4447564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

从视频输入的自我运动在线估计过程通常被称为视觉里程计。典型的光流和运动结构(SFM)技术已用于视觉里程计。单目同步定位和映射(SLAM)技术隐式估计相机的自我运动,同时逐步建立一个地图的环境。但在单目SLAM中,随着系统状态特征数量的增加,计算成本迅速增长;因此,保持帧率操作变得不切实际。本文提出了一种基于地图的视觉里程测量方法——单目SLAM。特征的数量是有限的,动态地从系统状态中删除特征,以保持稳定的处理时间。另一方面,如果特征被删除,那么以前访问过的站点就不能被识别,然而在里程计上下文中,这可能不是一个问题。提出了一种特征初始化方法和一种简单的恢复度量尺度方法。实际图像序列的实验结果表明,本文提出的方案是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monocular SLAM for Visual Odometry
The ego-motion online estimation process from a video input is often called visual odometry. Typically optical flow and structure from motion (SFM) techniques have been used for visual odometry. Monocular simultaneous localization and mapping (SLAM) techniques implicitly estimate camera ego-motion while incrementally build a map of the environment. However in monocular SLAM, when the number of features in the system state increases, the computational cost grows rapidly; consequently maintaining frame rate operation becomes impractical. In this paper monocular SLAM is proposed for map-based visual odometry. The number of features is bounded removing features dynamically from the system state, for maintaining a stable processing time. In the other hand if features are removed then previous visited sites can not be recognized, nevertheless in an odometry context this could not be a problem. A method for feature initialization and a simple method for recovery metric scale are proposed. The experimental results using real image sequences show that the scheme presented in this paper is promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信