{"title":"历史发展","authors":"P. Peebles","doi":"10.23943/princeton/9780691209821.003.0001","DOIUrl":null,"url":null,"abstract":"This chapter presents the origins of quantum mechanics. The story of how people hit on the highly non-intuitive world picture of quantum mechanics, in which the physical state of a system is represented by an element in an abstract linear space and its observable properties by operators in the space, is fascinating and exceedingly complicated. The much greater change from the classical world picture of Newtonian mechanics and general relativity to the quantum world picture came in many steps taken by many people, often against the better judgment of participants. There are three major elements in the story. The first is the experimental evidence that the energy of an isolated system can only assume special discrete or quantized values. The second is the idea that the energy is proportional to the frequency of a wave function associated with the system. The third is the connection between the de Broglie relation and energy quantization through the mathematical result that a wave equation with fixed boundary conditions allows only discrete quantized values of the frequency of oscillation of the wave function (as in the fundamental and harmonics of the vibration of a violin string).","PeriodicalId":257994,"journal":{"name":"Quantum Mechanics","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Historical Development\",\"authors\":\"P. Peebles\",\"doi\":\"10.23943/princeton/9780691209821.003.0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter presents the origins of quantum mechanics. The story of how people hit on the highly non-intuitive world picture of quantum mechanics, in which the physical state of a system is represented by an element in an abstract linear space and its observable properties by operators in the space, is fascinating and exceedingly complicated. The much greater change from the classical world picture of Newtonian mechanics and general relativity to the quantum world picture came in many steps taken by many people, often against the better judgment of participants. There are three major elements in the story. The first is the experimental evidence that the energy of an isolated system can only assume special discrete or quantized values. The second is the idea that the energy is proportional to the frequency of a wave function associated with the system. The third is the connection between the de Broglie relation and energy quantization through the mathematical result that a wave equation with fixed boundary conditions allows only discrete quantized values of the frequency of oscillation of the wave function (as in the fundamental and harmonics of the vibration of a violin string).\",\"PeriodicalId\":257994,\"journal\":{\"name\":\"Quantum Mechanics\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23943/princeton/9780691209821.003.0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23943/princeton/9780691209821.003.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This chapter presents the origins of quantum mechanics. The story of how people hit on the highly non-intuitive world picture of quantum mechanics, in which the physical state of a system is represented by an element in an abstract linear space and its observable properties by operators in the space, is fascinating and exceedingly complicated. The much greater change from the classical world picture of Newtonian mechanics and general relativity to the quantum world picture came in many steps taken by many people, often against the better judgment of participants. There are three major elements in the story. The first is the experimental evidence that the energy of an isolated system can only assume special discrete or quantized values. The second is the idea that the energy is proportional to the frequency of a wave function associated with the system. The third is the connection between the de Broglie relation and energy quantization through the mathematical result that a wave equation with fixed boundary conditions allows only discrete quantized values of the frequency of oscillation of the wave function (as in the fundamental and harmonics of the vibration of a violin string).