超高斯图像先验贝叶斯盲反卷积参数估计

M. Vega, R. Molina, A. Katsaggelos
{"title":"超高斯图像先验贝叶斯盲反卷积参数估计","authors":"M. Vega, R. Molina, A. Katsaggelos","doi":"10.5281/ZENODO.43886","DOIUrl":null,"url":null,"abstract":"Super Gaussian (SG) distributions have proven to be very powerful prior models to induce sparsity in Bayesian Blind Deconvolution (BD) problems. Their conjugate based representations make them specially attractive when Variational Bayes (VB) inference is used since their variational parameters can be calculated in closed form with the sole knowledge of the energy function of the prior model. In this work we show how the introduction in the SG distribution of a global strength (not necessary scale) parameter can be used to improve the quality of the obtained restorations as well as to introduce additional information on the global weight of the prior. A model to estimate the new unknown parameter within the Bayesian framework is provided. Experimental results, on both synthetic and real images, demonstrate the effectiveness of the proposed approach.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Parameter estimation in Bayesian Blind Deconvolution with super Gaussian image priors\",\"authors\":\"M. Vega, R. Molina, A. Katsaggelos\",\"doi\":\"10.5281/ZENODO.43886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Super Gaussian (SG) distributions have proven to be very powerful prior models to induce sparsity in Bayesian Blind Deconvolution (BD) problems. Their conjugate based representations make them specially attractive when Variational Bayes (VB) inference is used since their variational parameters can be calculated in closed form with the sole knowledge of the energy function of the prior model. In this work we show how the introduction in the SG distribution of a global strength (not necessary scale) parameter can be used to improve the quality of the obtained restorations as well as to introduce additional information on the global weight of the prior. A model to estimate the new unknown parameter within the Bayesian framework is provided. Experimental results, on both synthetic and real images, demonstrate the effectiveness of the proposed approach.\",\"PeriodicalId\":198408,\"journal\":{\"name\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.43886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.43886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在贝叶斯盲反卷积(BD)问题中,超高斯(SG)分布已被证明是非常强大的先验模型。当使用变分贝叶斯(VB)推理时,它们的共轭表示使它们特别有吸引力,因为它们的变分参数可以用先验模型的能量函数的唯一知识以封闭形式计算。在这项工作中,我们展示了如何在SG分布中引入全局强度(非必要尺度)参数来提高获得的恢复质量,以及引入关于先验全局权重的附加信息。给出了一个在贝叶斯框架下估计新的未知参数的模型。在合成图像和真实图像上的实验结果都证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter estimation in Bayesian Blind Deconvolution with super Gaussian image priors
Super Gaussian (SG) distributions have proven to be very powerful prior models to induce sparsity in Bayesian Blind Deconvolution (BD) problems. Their conjugate based representations make them specially attractive when Variational Bayes (VB) inference is used since their variational parameters can be calculated in closed form with the sole knowledge of the energy function of the prior model. In this work we show how the introduction in the SG distribution of a global strength (not necessary scale) parameter can be used to improve the quality of the obtained restorations as well as to introduce additional information on the global weight of the prior. A model to estimate the new unknown parameter within the Bayesian framework is provided. Experimental results, on both synthetic and real images, demonstrate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信