{"title":"石墨烯纳米板-铜(GNP-Cu)涂层形态变化的基本见解:重复池沸腾试验的影响","authors":"A. Rishi, Anju Gupta","doi":"10.1115/icnmm2020-1027","DOIUrl":null,"url":null,"abstract":"\n Being an extremely vigorous process involving a continuous intense bubble activity, repetitive pool boiling study is essential for many industrial applications. In this work, we have utilized highly thermally conductive and highly wettable graphene nanoplatelets (GNP) to form GNP-Copper based composite coatings for enhancing the pool boiling heat transfer performance. A multi-step electrodeposition technique was implemented to develop robust coatings on the copper substrates. Repetitive pool boiling studies were conducted on the 2% GNP-Cu coating which achieved the highest CHF of 286 W/cm2 and HTC of 204 kW/m2-°C. After investigating the effect of repetitive boiling on deposited GNP layers and morphology, it was found that GNP were reduced to form r-GNP (reduced GNP) and small increment in pore sizes was observed. Additionally, with repetitive boiling, it was observed that the heat transfer coefficient was continuously increased and compared to pristine copper surface 2% GNP-Cu coating yielded ∼456% increment in HTC at the end of third repetitive test.","PeriodicalId":198176,"journal":{"name":"ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fundamental Insight on Morphological Changes of Graphene Nanoplatelets-Copper (GNP-Cu) Coatings: Effects of Repetitive Pool Boiling Tests\",\"authors\":\"A. Rishi, Anju Gupta\",\"doi\":\"10.1115/icnmm2020-1027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Being an extremely vigorous process involving a continuous intense bubble activity, repetitive pool boiling study is essential for many industrial applications. In this work, we have utilized highly thermally conductive and highly wettable graphene nanoplatelets (GNP) to form GNP-Copper based composite coatings for enhancing the pool boiling heat transfer performance. A multi-step electrodeposition technique was implemented to develop robust coatings on the copper substrates. Repetitive pool boiling studies were conducted on the 2% GNP-Cu coating which achieved the highest CHF of 286 W/cm2 and HTC of 204 kW/m2-°C. After investigating the effect of repetitive boiling on deposited GNP layers and morphology, it was found that GNP were reduced to form r-GNP (reduced GNP) and small increment in pore sizes was observed. Additionally, with repetitive boiling, it was observed that the heat transfer coefficient was continuously increased and compared to pristine copper surface 2% GNP-Cu coating yielded ∼456% increment in HTC at the end of third repetitive test.\",\"PeriodicalId\":198176,\"journal\":{\"name\":\"ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icnmm2020-1027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icnmm2020-1027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fundamental Insight on Morphological Changes of Graphene Nanoplatelets-Copper (GNP-Cu) Coatings: Effects of Repetitive Pool Boiling Tests
Being an extremely vigorous process involving a continuous intense bubble activity, repetitive pool boiling study is essential for many industrial applications. In this work, we have utilized highly thermally conductive and highly wettable graphene nanoplatelets (GNP) to form GNP-Copper based composite coatings for enhancing the pool boiling heat transfer performance. A multi-step electrodeposition technique was implemented to develop robust coatings on the copper substrates. Repetitive pool boiling studies were conducted on the 2% GNP-Cu coating which achieved the highest CHF of 286 W/cm2 and HTC of 204 kW/m2-°C. After investigating the effect of repetitive boiling on deposited GNP layers and morphology, it was found that GNP were reduced to form r-GNP (reduced GNP) and small increment in pore sizes was observed. Additionally, with repetitive boiling, it was observed that the heat transfer coefficient was continuously increased and compared to pristine copper surface 2% GNP-Cu coating yielded ∼456% increment in HTC at the end of third repetitive test.