利用语义充实改进推文中醉酒短信的分类

Marcos A. Grzeça, K. Becker, R. Galante
{"title":"利用语义充实改进推文中醉酒短信的分类","authors":"Marcos A. Grzeça, K. Becker, R. Galante","doi":"10.1109/WI.2018.00-90","DOIUrl":null,"url":null,"abstract":"Excessive alcohol consumption is a worldwide problem, and social networks such as Twitter can provide valuable data that help understanding factors related to alcoholism, particularly among youngsters. The identification of drunk tweets (i.e. posted under the influence of alcohol) is complex because tweets are short, sparse and written with diverse and internet specific vocabulary, possibly with errors due to alcohol influence. In this paper, we propose an enriching framework that integrates conceptual and semantic features that expand and generalize the vocabulary, providing context to tweet terms. It also handles misspellings and the selection of discriminative features resulting from contextual enrichment. We outperformed the baseline, achieving improvements of 13.79 percentage points in recall, with no significant harm to precision. We illustrate the value of drunk tweets classification by developing an exploratory analysis that reveals drunk tweeters demographics and tweet properties.","PeriodicalId":405966,"journal":{"name":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving the Classification of Drunk Texting in Tweets Using Semantic Enrichment\",\"authors\":\"Marcos A. Grzeça, K. Becker, R. Galante\",\"doi\":\"10.1109/WI.2018.00-90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Excessive alcohol consumption is a worldwide problem, and social networks such as Twitter can provide valuable data that help understanding factors related to alcoholism, particularly among youngsters. The identification of drunk tweets (i.e. posted under the influence of alcohol) is complex because tweets are short, sparse and written with diverse and internet specific vocabulary, possibly with errors due to alcohol influence. In this paper, we propose an enriching framework that integrates conceptual and semantic features that expand and generalize the vocabulary, providing context to tweet terms. It also handles misspellings and the selection of discriminative features resulting from contextual enrichment. We outperformed the baseline, achieving improvements of 13.79 percentage points in recall, with no significant harm to precision. We illustrate the value of drunk tweets classification by developing an exploratory analysis that reveals drunk tweeters demographics and tweet properties.\",\"PeriodicalId\":405966,\"journal\":{\"name\":\"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2018.00-90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2018.00-90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

过度饮酒是一个世界性的问题,像Twitter这样的社交网络可以提供有价值的数据,帮助我们了解与酗酒有关的因素,尤其是在年轻人中。醉酒推文(即在酒精影响下发布的推文)的识别是复杂的,因为推文简短,稀疏,并且使用多种互联网特定词汇,可能由于酒精影响而出现错误。在本文中,我们提出了一个丰富的框架,该框架集成了扩展和概括词汇表的概念和语义特征,为tweet术语提供上下文。它还处理拼写错误和上下文丰富导致的歧视性特征的选择。我们的表现超过了基线,召回率提高了13.79个百分点,对准确率没有显著影响。我们通过开发一种探索性分析来说明醉酒推文分类的价值,该分析揭示了醉酒推文的人口统计数据和推文属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Classification of Drunk Texting in Tweets Using Semantic Enrichment
Excessive alcohol consumption is a worldwide problem, and social networks such as Twitter can provide valuable data that help understanding factors related to alcoholism, particularly among youngsters. The identification of drunk tweets (i.e. posted under the influence of alcohol) is complex because tweets are short, sparse and written with diverse and internet specific vocabulary, possibly with errors due to alcohol influence. In this paper, we propose an enriching framework that integrates conceptual and semantic features that expand and generalize the vocabulary, providing context to tweet terms. It also handles misspellings and the selection of discriminative features resulting from contextual enrichment. We outperformed the baseline, achieving improvements of 13.79 percentage points in recall, with no significant harm to precision. We illustrate the value of drunk tweets classification by developing an exploratory analysis that reveals drunk tweeters demographics and tweet properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信