将深度学习、验证和基于场景的编程结合起来

Guy Katz, Achiya Elyasaf
{"title":"将深度学习、验证和基于场景的编程结合起来","authors":"Guy Katz, Achiya Elyasaf","doi":"10.1145/3459086.3459631","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) [4] is dramatically changing the world of software. The rapid improvement in deep neural network (DNN) technology now enables engineers to train models that achieve superhuman results, often surpassing algorithms that have been carefully hand-crafted by domain experts [19, 20]. There is even an intensifying trend of incorporating DNNs in safety-critical systems, e.g. as controllers for autonomous vehicles and drones [1, 12].","PeriodicalId":127610,"journal":{"name":"Proceedings of the 1st International Workshop on Verification of Autonomous & Robotic Systems","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Towards combining deep learning, verification, and scenario-based programming\",\"authors\":\"Guy Katz, Achiya Elyasaf\",\"doi\":\"10.1145/3459086.3459631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning (DL) [4] is dramatically changing the world of software. The rapid improvement in deep neural network (DNN) technology now enables engineers to train models that achieve superhuman results, often surpassing algorithms that have been carefully hand-crafted by domain experts [19, 20]. There is even an intensifying trend of incorporating DNNs in safety-critical systems, e.g. as controllers for autonomous vehicles and drones [1, 12].\",\"PeriodicalId\":127610,\"journal\":{\"name\":\"Proceedings of the 1st International Workshop on Verification of Autonomous & Robotic Systems\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st International Workshop on Verification of Autonomous & Robotic Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3459086.3459631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Workshop on Verification of Autonomous & Robotic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459086.3459631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

深度学习(DL)[4]正在极大地改变软件世界。深度神经网络(DNN)技术的快速发展现在使工程师能够训练获得超人结果的模型,通常超过由领域专家精心制作的算法[19,20]。甚至在安全关键系统中纳入深度神经网络的趋势也在加剧,例如自动驾驶汽车和无人机的控制器[1,12]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards combining deep learning, verification, and scenario-based programming
Deep learning (DL) [4] is dramatically changing the world of software. The rapid improvement in deep neural network (DNN) technology now enables engineers to train models that achieve superhuman results, often surpassing algorithms that have been carefully hand-crafted by domain experts [19, 20]. There is even an intensifying trend of incorporating DNNs in safety-critical systems, e.g. as controllers for autonomous vehicles and drones [1, 12].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信