模函子,上同调场论,和拓扑递归

J. Andersen, G. Borot, N. Orantin
{"title":"模函子,上同调场论,和拓扑递归","authors":"J. Andersen, G. Borot, N. Orantin","doi":"10.1090/PSPUM/100/01772","DOIUrl":null,"url":null,"abstract":"Given a topological modular functor $\\mathcal{V}$ in the sense of Walker \\cite{Walker}, we construct vector bundles over $\\bar{\\mathcal{M}}_{g,n}$, whose Chern classes define semi-simple cohomological field theories. This construction depends on a determination of the logarithm of the eigenvalues of the Dehn twist and central element actions. We show that the intersection of the Chern class with the $\\psi$-classes in $\\bar{\\mathcal{M}}_{g,n}$ is computed by the topological recursion of \\cite{EOFg}, for a local spectral curve that we describe. In particular, we show how the Verlinde formula for the dimensions $D_{\\vec{\\lambda}}(\\mathbf{\\Sigma}_{g,n}) = \\dim \\mathcal{V}_{\\vec{\\lambda}}(\\mathbf{\\Sigma}_{g,n})$ is retrieved from the topological recursion. We analyze the consequences of our result on two examples: modular functors associated to a finite group $G$ (for which $D_{\\vec{\\lambda}}(\\mathbf{\\Sigma}_{g,n})$ enumerates certain $G$-principle bundles over a genus $g$ surface with $n$ boundary conditions specified by $\\vec{\\lambda}$), and the modular functor obtained from Wess-Zumino-Witten conformal field theory associated to a simple, simply-connected Lie group $G$ (for which $\\mathcal{V}_{\\vec{\\lambda}}(\\mathbf{\\Sigma}_{g,n})$ is the Verlinde bundle).","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Modular functors, cohomological field\\n theories, and topological recursion\",\"authors\":\"J. Andersen, G. Borot, N. Orantin\",\"doi\":\"10.1090/PSPUM/100/01772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a topological modular functor $\\\\mathcal{V}$ in the sense of Walker \\\\cite{Walker}, we construct vector bundles over $\\\\bar{\\\\mathcal{M}}_{g,n}$, whose Chern classes define semi-simple cohomological field theories. This construction depends on a determination of the logarithm of the eigenvalues of the Dehn twist and central element actions. We show that the intersection of the Chern class with the $\\\\psi$-classes in $\\\\bar{\\\\mathcal{M}}_{g,n}$ is computed by the topological recursion of \\\\cite{EOFg}, for a local spectral curve that we describe. In particular, we show how the Verlinde formula for the dimensions $D_{\\\\vec{\\\\lambda}}(\\\\mathbf{\\\\Sigma}_{g,n}) = \\\\dim \\\\mathcal{V}_{\\\\vec{\\\\lambda}}(\\\\mathbf{\\\\Sigma}_{g,n})$ is retrieved from the topological recursion. We analyze the consequences of our result on two examples: modular functors associated to a finite group $G$ (for which $D_{\\\\vec{\\\\lambda}}(\\\\mathbf{\\\\Sigma}_{g,n})$ enumerates certain $G$-principle bundles over a genus $g$ surface with $n$ boundary conditions specified by $\\\\vec{\\\\lambda}$), and the modular functor obtained from Wess-Zumino-Witten conformal field theory associated to a simple, simply-connected Lie group $G$ (for which $\\\\mathcal{V}_{\\\\vec{\\\\lambda}}(\\\\mathbf{\\\\Sigma}_{g,n})$ is the Verlinde bundle).\",\"PeriodicalId\":384712,\"journal\":{\"name\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PSPUM/100/01772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/100/01772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

给定一个Walker \cite{Walker}意义上的拓扑模函子$\mathcal{V}$,我们构造了$\bar{\mathcal{M}}_{g,n}$上的向量束,其Chern类定义了半简单上同调场论。这种构造依赖于Dehn扭转和中心元作用的特征值的对数的确定。我们表明,对于我们描述的局部谱曲线,通过\cite{EOFg}的拓扑递归计算了$\bar{\mathcal{M}}_{g,n}$中Chern类与$\psi$ -类的交集。特别是,我们将展示如何从拓扑递归中检索维度$D_{\vec{\lambda}}(\mathbf{\Sigma}_{g,n}) = \dim \mathcal{V}_{\vec{\lambda}}(\mathbf{\Sigma}_{g,n})$的Verlinde公式。我们用两个例子来分析我们的结果的后果:与有限群$G$相关的模函子(其中$D_{\vec{\lambda}}(\mathbf{\Sigma}_{g,n})$枚举了在含有$\vec{\lambda}$指定的$n$边界条件的$g$表面上的某些$G$ -原理束),以及与简单单连通李群$G$相关的由wesszumino - witten共形场理论获得的模函子(其中$\mathcal{V}_{\vec{\lambda}}(\mathbf{\Sigma}_{g,n})$是Verlinde束)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modular functors, cohomological field theories, and topological recursion
Given a topological modular functor $\mathcal{V}$ in the sense of Walker \cite{Walker}, we construct vector bundles over $\bar{\mathcal{M}}_{g,n}$, whose Chern classes define semi-simple cohomological field theories. This construction depends on a determination of the logarithm of the eigenvalues of the Dehn twist and central element actions. We show that the intersection of the Chern class with the $\psi$-classes in $\bar{\mathcal{M}}_{g,n}$ is computed by the topological recursion of \cite{EOFg}, for a local spectral curve that we describe. In particular, we show how the Verlinde formula for the dimensions $D_{\vec{\lambda}}(\mathbf{\Sigma}_{g,n}) = \dim \mathcal{V}_{\vec{\lambda}}(\mathbf{\Sigma}_{g,n})$ is retrieved from the topological recursion. We analyze the consequences of our result on two examples: modular functors associated to a finite group $G$ (for which $D_{\vec{\lambda}}(\mathbf{\Sigma}_{g,n})$ enumerates certain $G$-principle bundles over a genus $g$ surface with $n$ boundary conditions specified by $\vec{\lambda}$), and the modular functor obtained from Wess-Zumino-Witten conformal field theory associated to a simple, simply-connected Lie group $G$ (for which $\mathcal{V}_{\vec{\lambda}}(\mathbf{\Sigma}_{g,n})$ is the Verlinde bundle).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信