AdaBoost在偏振SAR图像分类中的应用

Rui Min, Xiaobo Yang, Zhiqin Zhao
{"title":"AdaBoost在偏振SAR图像分类中的应用","authors":"Rui Min, Xiaobo Yang, Zhiqin Zhao","doi":"10.1109/RADAR.2009.4976988","DOIUrl":null,"url":null,"abstract":"In this paper, a method of polarimetric SAR image classification based on polarimetric decomposition and AdaBoost algorithm is proposed. The proposed method improves classification accuracy and speed. AdaBoost algorithm, as a robust learner with high accuracy, can fully utilize the polarimetric features to achieve image classification. In simulated tests, the proposed method is observed to produce improved classification accuracy and speed, compared with H /α̅ classification algorithm.","PeriodicalId":346898,"journal":{"name":"2009 IEEE Radar Conference","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Application of AdaBoost in polarimetric SAR image classification\",\"authors\":\"Rui Min, Xiaobo Yang, Zhiqin Zhao\",\"doi\":\"10.1109/RADAR.2009.4976988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a method of polarimetric SAR image classification based on polarimetric decomposition and AdaBoost algorithm is proposed. The proposed method improves classification accuracy and speed. AdaBoost algorithm, as a robust learner with high accuracy, can fully utilize the polarimetric features to achieve image classification. In simulated tests, the proposed method is observed to produce improved classification accuracy and speed, compared with H /α̅ classification algorithm.\",\"PeriodicalId\":346898,\"journal\":{\"name\":\"2009 IEEE Radar Conference\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2009.4976988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2009.4976988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种基于极化分解和AdaBoost算法的极化SAR图像分类方法。该方法提高了分类精度和分类速度。AdaBoost算法作为一种鲁棒学习算法,可以充分利用极化特征实现图像分类,具有较高的学习精度。在仿真实验中,与H /α′s分类算法相比,该方法具有更高的分类精度和分类速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of AdaBoost in polarimetric SAR image classification
In this paper, a method of polarimetric SAR image classification based on polarimetric decomposition and AdaBoost algorithm is proposed. The proposed method improves classification accuracy and speed. AdaBoost algorithm, as a robust learner with high accuracy, can fully utilize the polarimetric features to achieve image classification. In simulated tests, the proposed method is observed to produce improved classification accuracy and speed, compared with H /α̅ classification algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信